
1

Introduction to PHP5 with MySQL

Svein Nordbotten

Svein Nordbotten & Associates

Bergen 2009

2

Preface

This publication is an extract of text and illustrations from an online course offered at several

institutions in 2006-2008. The course curriculum was David Sklar: Learning PHP 5 O'Reilly. (2004) This

publication is referred to as Sklar in the course.

It is based on a set off applications which all are fully developed and explained.

Bergen 2009,

Svein Nordbotten

3

Contents
Preface .. 2

Session 1: Static web applications .. 6

Basics ... 6

Web applications .. 6

HTML - Hypertext Markup Language .. 7

HTML Format .. 8

Texts .. 8

Links .. 9

Images ... 10

Lists ... 11

Tables .. 12

Forms .. 12

Frames ... 14

CSS, JavaScript and XML .. 15

Session 2: Dynamic applications by PHP ... 16

Dynamic web sites .. 16

CGI and PERL ... 17

Applications Program Interfaces ... 18

PHP Language .. 18

Approach in this course .. 19

Simple example ... 19

Guessing example ... 21

Session 3: Dynamic application without database ... 24

Market research .. 24

System design ... 24

Market research .. 25

Market analysis ... 30

Session 4: Introducing the MySQL database... 33

4

Dynamic applications and databases .. 33

Creation of a reference database to you personal library. ... 33

Menu page .. 34

Listing the content of the database .. 37

Searching the database for a book reference. .. 39

Deleting rows in the database .. 44

Removing database ... 45

Session 5: Polling with MySQL database ... 47

Opinion polls ... 47

Application design ... 47

Database ... 48

Application menu .. 48

Creating records and a list of panel members .. 49

Processing, statistics and rotation .. 53

Session 6: File processing .. 58

Maintaining files.. 58

Fetching files ... 59

Uploading files .. 62

Session 7: Functions in PHP .. 65

Functions ... 65

Authorization and authentication ... 66

Authorization .. 70

PIN code assignment ... 70

Authentication .. 71

Function library ... 72

Logging .. 72

Logging function .. 73

Example environment ... 73

Parsing ... 75

Session 8: Information retrieval .. 79

General model... 79

Index module .. 80

5

Search module .. 84

Administrative module ... 87

Session 9: e-learning ... 91

Web courses .. 91

Course architecture... 91

Authorization and authentication ... 92

Registration and authorization ... 93

List of content ... 95

Sessions ... 96

Instructor's tools. .. 100

Concluding remarks .. 103

Session 10: Web shop ... 104

e-shops .. 104

Business promotion .. 104

Buying products .. 106

Purchasing products .. 112

A final remark .. 115

A bibliography for further studies ... 116

6

Session 1: Static web applications

Basics

This session is a short introduction to Hyper-Text Mark-up Language (HTML) for those not

acquainted with this language, and a fast repetition for those already experts in the language.

Web applications

The topic of this course is the design and implementation of web applications. In this context a

web application is a server-based system which can interact with the user and respond with

several interrelated pages for display at the user's computer.

We distinguish between 2 categories of applications, the static and the dynamic applications. An

application is denoted as static if the pages returned have an invariable content. In a static

application, i.e. the returned pages cannot be modified according to the individual characteristics

or behavior of the user. The user makes a request to a host at which the web server processes the

request and returns a web page to be displayed at the user's screen. Note that the web server can

retrieve a file stored at the host, e.g. a .jpg file, and use it for composing the web page. The basic

web server cannot, however, store or modify files submitted by the clients.

A dynamic application, on the other hand, can modify its responses by adding to the returned

page the name of the user, the number of times this particular user has visited the application

web site, her account data, course progress, etc. It requires a special program which are able to

additional processing, for example to process and save data sent by the user or on demand return

data stored in a data base to the user. The main objective of this course is to introduce you to the

art of developing dynamic web applications.

The Internet was initiated in the 1970's as a further development of the ARPANET. The World

Wide Web, WWW, was developed and introduced in 1989 by Tim Berners-Lee and Robert

Cailliau at the European Particle Physics Laboratory (CERN) as an Internet tool for

collaborative knowledge-sharing. It became in short time very popular. WWW comprises today

a large number of computers which make files available through Internet according to the

HyperText Transfer Protocol, HTTP. Today, it is estimated that more than 300 M people

worldwide are using the web.

The visible content of a web file is called a web document. If a web document is prepared

according to the HTTP protocol, it can be transferred from a host computer using appropriate

software to a requesting client by Internet. Most documents are prepared by means of the tag-

based language HyperText Markup Language, HTML, frequently supplemented with some

additional tools. If the requesting client has the necessary browser software installed, the file

received can be displayed and, if wanted, a new request can be generated, form exampled by

clicking a link in the displayed document.

A web site is usually a set of interrelated web-files hosted by a computer running a web server.

Design and implementation of a web site have several aspects:

7

 the topic of the site
 the layout of the pages sent from the site
 the functionality of the site

The topics of a web site are varying and depending on the owner's interests and mission. We

shall not in this course discuss which appropriate pages for web publication are, and which are

not. Examples of both interesting and less interesting pages are easily found at the net.

The layout of pages is a fascinating subject. All kinds of backgrounds colors and patterns, fonts

of different kinds and sizes, etc. are among the layout factors from which the designer can

choose. Some pages have animation and/or sound embedded, others include programs

transferred to and acting in the client computer. The layout of a page is an important subject

because it probably has a significant impact on how the receivers will perceive the page. So far,

the layout has to a large extent been determined by the latest hypes and layout rules. The

heuristic design rules offered have usually been based on personal opinions and limited empirical

facts. Large scale investigations of people's perception of alternative layouts are needed.

However, layout is neither the main subject of this course.

The subject of this course is the functionality required to change the web arena from basically

static to dynamic applications. The required functionality is the web site's ability to react on a

visitor's behavior over a shorter or longer time period expressed by a series of requests and

responses. It is called dynamic because the web pages returned to the client depend on the

visitor's previous interaction.

Most web sites are still static, i.e. each web page is presented in the same way independent of

client and time. Dynamic functionality means that the pages returned to the clients can be

adjusted to previous input from the individual client and/or time. Development of dynamic web

sites can be approached in many ways. In this course, we limit our discussion to the functionality

based on the scripting language PHP Language and on the PHP Application Engine. However,

before we embark on the dynamic aspects, we shall in this session briefly summarize the

HTML.

HTML - Hypertext Markup Language

HTML is developed from SGML Standard Generalized Markup Language which was

approved in 1986 as a standard for marking up documents so they can be stored and read by

computers. HTML includes only a smaller fraction of the features covered by SGML and was

aimed to be a convenient tool to express pages to be served to the users by WWW. The most

recent version of HTML is 4.01. An XML based version of HTML 4.01 is XHTML 1.0. In this

course we refer to the HTML 4.01 version. To serve these the HTML pages, web servers,

including the Apache servers, were developed. For the client side, a number of browsers were

introduced of which MS Internet Explorer and Netscape have been the dominating.

The remaining of this session is a short summary of the most basic parts of HTML needed for

this course. For more advanced use of HTML, readers are referred to more advanced literature.

8

HTML Format

To distinguish between the content of the computer file sent to the browser and the resulting

page displayed on the users screen, we shall in this course refer to the former as a HTML page

and the latter as a web display. The HTML language is governed by the use of a set of tags. A

tag is a string surrounded by < and > (e.g. <center>) the following text. In many cases, the tag

string is a single character (<p> : start of a new paragraph). Some tags are single such as the tag

used for comments (<!-- Comment -->) Other tags require a corresponding end tag which is the

tag string preceded by a / (</center> : end the centered text). These tags and the included text are

called tag blocks. Some tags can be nested. There may for example be several paragraphs within

a centered text. Many tags include attributes which can be required or optional (<font

face="New Century" size="2" color="blue">)

A complete HTML page consists of several parts. A typical basic structure may look like (line

numbering is included in this and other pages for convenient reference, and should not be

included in the page):

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>
5. <!-- The title of the document may be typed here --></title>
6. </head>
7. <body>
8. <!-- The specific content of the page is typed in the body-block -->
9. </body>
10. </html>

Type this page and save it in your server with a filename, e.g. blank.htm. It can then be called

from a client, but since it still has not any content, it will be displayed as a blank screen by the

browser.

Note that this is the complete frame for an HTML page, it will also usually function with default

specifications with only <html> </html> surrounding your text.

Texts

Let us give the page some content:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>text</title>
5. </head>
6. <body>
7. <center>

9

8. <h2> About this session </h2></center>
9. <p> The purpose of this session is to introduce the course participants to the basic elements of HTML. It

is hoped that the introduction will make it possible for the participants to read the HTML pages used in
this course, and use the knowledge for preparing their own simple HTML pages in combination with the
PHP scripts. </p>

10. <center>
11. <p> Good luck! </p>
12. Greetings from

13. the author
14. </center>
15. </body>
16. </html>

This page is named text.htm in the example. It illustrates how you can mark headings (standard

tags are <h1>, <h2> and <h3>), color the text (16 different colors are predefined: red, blue,

green, blue, etc. and many more are available by code representation), paragraphs (<p>), line

shift (
) and center text (<center>).

Links

Hypertext is the trademark of HTML. We can easily develop a page which includes a link (using

the <a> and tags) to another document, for example the page discussed in the section

above. The <a> tag requires at least one attribute, href, the value of which is the name of the file

enclosed in double quotes to which the link refers.

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>Link</title>
5. </head>
6. <body>
7. <center>
8. <h2> Link to the text page </h2></center>
9. <p> You may have links to several different destinations in one page. The one which is first clicked will

be activated. Click the following link to get to the text page:</p>
10. <p>Link to the text page </p>
11. </center>
12. </body>
13. </html>

Several links in sequence can be created to form a menu as in the menu to the HTML example

of this session.

10

Images

In the age of multi-media, many HTML pages have illustrations (Figure 1.1). A possibility to

include pictures in the pages is therefore required. We know from regular work with computers

that pictures can be saved in a number of different file formats of which the .gif and the .jpg are

used in connection with HTML.

Figure 1.1:A famous painting by Edvard Munch

We assume that we have an image of a well known painting by Edward Munch, the Scream,

saved in a file named munch.jpg in the same folder as we use for our HTML pages. We can

now write an HTML page which includes this image in the returned page for display.

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>image.htm</title>
5. </head>
6. <body>
7. <center>

11

8. <h2>A Munch picture displayed</h2>
9. < p>You requested a page displaying a picture by Edvard Munch. Here it is:</p>
10.
11. </center
12. </body>
13. </html>

The tag used is which can have several attributes of which src refers to the file in which

the image is stored, is required. You can easily scale the picture by changing the attributes width

and height in the image tag. The metric unit used is pixels. The position of the picture within the

displayed page can be controlled by the attribute align with a number of possible alternative

values (left, middle, right, top, bottom, a. o.). Note that the scaling and the positioning

attributes are optional.

Lists

We have got used to the ability of modern word processor to prepare numbered and unnumbered

list. The HTML has included this ability by the tag pairs and .

The page in this example can serve as an illustration of this capability:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>list.htm</title>
5. </head>
6. <body>
7. <center>
8. <h2>Menu for the example options</h2>
9. <p >This example illustrate the basic features of HTML which are:</p>
10.
11. Blank page
12. Text page
13. Page with link
14. Page with picture
15. Page with table
16. Form page
17. Frame page
18.
19. </center>
20. </body>
21. </html>

The and tags delimit the individual elements, or lines, in the list. Note that in this page

we use the unnumbered tag. By changing the start and end tag to and , the

elements would be numbered consecutively from 1 and up.

12

Tables

The table tag, <table>, is very useful in several ways for presenting one- (a list) and two-

dimensional tables with or without borders. When you consider the display of the menu in the

previous example, it gives an unordered impression. Use of the table tag with associated tags can

make it more orderly. Consider the following page which presents the list as a one-dimensional

table:

1. <!doctype html public "-//w3w//dtd html 4.0 transitional//en">
2. <html>
3. <head>
4. <title>table.htm</title>
5. </head>
6. <body>
7. <center>
8. <h2>Menu for the example options</h2>
9. <p>This example illustrate the basic features of HTML which are:</p>
10. <table>
11. <tr><td>1. Blank page</td></tr>
12. <tr><td>2. Text page</td></tr>
13. <tr><td>3. Page with link</td></tr>
14. <tr><td>4. Page with picture</td></tr>
15. <tr><td>5. Page with table</td></tr>
16. <tr><td>6. Form page </td></tr>
17. <tr><td>7. numbered Frame page</td></tr>
18. </table>
19. </center>
20. </body>
21. </html>
22. </table>

In addition to the <table> tag, we use the tags <tr> and </tr> to delimit a table row, and the tags

<td> and </td> to mark an element in the row. In this example there is only one element per

row, usually there are several. In regular tables there is always one element per column in each

row. If the cell is empty it is marked by <td></td>.

In regular tables, there is usually also a header row with column names. The column names are

marked with the tags <th> and <(th>. Each of the table tags can include one or optional

attributes for defining size, alignment, fonts, border, etc. making the tags very flexible and

useful.

Forms

One of the most important properties of HTML is the <form> tag which permits sending data to

the server. This tag is the key to combining HTML and the PHP language to a tool for creating

dynamic applications. The <form> tag makes it possible to create pages for the user with

different types of input (radio buttons, check boxes, texts, files, etc) and send the input for further

processing by the server according to a specified program, for example a PHP script. Note that

13

HTML itself has no facility for processing data on the server. (There are extensions of HTML

which permit limited processing at the server).

We shall see a number of applications in the following sessions based on interaction between

HTML and PHP scripts. For illustration of the <form> tag in this session, a form will be

discussed and at the accepting server side a very simple PHP script will return a message

confirming the submitted information.

The HTML form page looks like this:

1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2. <html>
3. <head>
4. <title>form.htm</title>
5. </head>
6. <body>
7. <center>
8. <h2>A form for sending a file for processing</h2>
9. <p>This form can be used for sending a file for alternative processing, Action A or B, and assumes a

processing script at the server. In this example, the only action taken by the server is to return a
message acknowledging the received file and message.</p>

10. <form action="acknowledge.php" method="post">
11. <table>
12. <tr><td>Message:</td><td><input name="message" type="text"></td></tr>
13. <tr><td>File:</td><td><input name="testfile" type="file" enctype="multipart/form-data"></td></tr>
14. <tr><td>Action A:</td><td><input name="processing" type="radio" value="A"></td></tr>
15. <tr><td>Action B:</td><td><input name="processing" type="radio" value="B"></td></tr>
16. <tr><td></td><td><input name="" type="submit" value="Submit file"></td></tr>
17. </table>
18. </form>
19. You can either use any .htm or .doc file you have on your client.
20. </center>
21. </body>
22. </html>

The form tag appears on Line 10. In this form, 2 attributes are used, the action, which specify

the PHP script for processing the submitted information, and the method determining which

way the information should be transferred. Note that we must use the post method, why will be

explain in a later session. We also postpone the discussion of the PHP script, acknowledge.php,

to the next session.

The form type of content is determined by the <input> tags in Lines 12 -16. All input tags have

2 attributes in common, the name and the type of input. As long as the name is not yet used, it

can be chosen quite freely (avoid special characters and blanks). Available values of the type are

text, password, radio, checkbox, file, image, and submit. For type="file" there is also a third

attribute, enctype. For all types that are optional attributes which can determine the size of the

fields for giving answers.

14

Input tags of type="submit" are special. They do not require any name specified, but you can

text the submit button by means of the value attribute.

The form script can contain other tags than <input> as the <select> tag to create menus,

<textarea> for creating an area into which the user can provide a longer text, and others.

Frames

The last feature of HTML we want to cover in this introduction is the frames. We have in the

examples above developed a menu page from which we can select the special feature we want to

be demonstrated. However, after the first demonstration, we have to use the Back button to find

the menu again. We therefore need a way to divide the screen into 2 windows, one showing the

menu permanently and the other displaying the topic selected for demonstration.

The frame feature of HTML permit us to divide the screen into 2 or more windows, all visible

and active at the same time.This feature uses 2 tags, <frameset> and <frame>. The page below

generates the effect we want.

1. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
"http://www.w3.org/TR/html4/frameset.dtd">

2. <html>
3. <head>
4. <title>frame.htm</title>
5. </head>
6. <frameset cols="20%,*" frameborder="yes" border="1" framespacing="0">
7. <frame src="table2.htm" name="leftFrame">
8. <frame src="blank.htm" name="mainFrame">
9. </frameset>
10. </html>

Note the difference in the <!doctype> tag from those used in previous HTML pages and that the

<body> tag is not included.

Lines 6 - 9 specify a frame set, because the <frameset> tag has 4 attributes, cols, with the value

"20%,*" divides the width of the client's screen in 2 windows by a vertical border assigning

20% of the screen to the left window and the rest to the right window, frame border and

border, specifying a visible border of size 1, and finally frame spacing which is set to 0.

Inside the frame set block there are 2 <frame> tags, one for each window. They have both 3

attributes which specify the src, i.e. the file to provide content to and the name of the respective

window. This page generates the 2 windows and their initial content (the right window is empty

because it is generated by blank.htm. To understand how the further content of the windows is

created, we need to look at a modified version of table.htm called table2.htm (only the part

within the <body> block is reproduced):

15

1. <center>
2. <h2>Menu for the example options</h2>
3. <p>This example illustrate the basic features of HTML which are:</p>
4. <table>
5. <tr><td>1. Blank page</td></tr>
6. <tr><td>2. Text page</td></tr>
7. <tr><td>3. Page with link</td></tr>
8. <tr><td>4. Page with picture</td></tr>
9. <tr><td>5. Page with table</td></tr>
10. <tr><td>6. Form page</td></tr>
11. </table>
12. </center>

The only difference from the original table.htm is the inclusion of the argument target with

value "mainFrame" in the <a> tags of Lines 5 -10. The target directs the browser to display the

link in the window named mainFrame, i.e. the right hand window.

CSS, JavaScript and XML

The tool case for preparing web documents contains a number of useful objects. Close to HTML

are Cascading Style Sheets (CSS), JavaScript and eXtensible Markup Language (XML).

CSS was developed for use with HTML and introduced in 1996, and is implemented in most

browsers.

16

Session 2: Dynamic applications by PHP

Dynamic web sites

The static model of the web interaction is based on a set of pre-developed static web pages stored

on a host server, and in 3 basic steps: .

1. A client sends a request for a web page to the host.
2. The host sends a copy of the requested page to the client.
3. If desired, points 2 and 3 are repeated for new pages.

A node in the web which manages the host tasks is called a web server. In the static model,

Figure 2.1, the host has no ability to analyze the request and adjust the response accordingly. The

 Figure 2.1: Static web server

response is a requested pre-designed web page. The request-response exchange is therefore

called static. However, the exchange protocol used, HTTP, provides possibilities for some

additional items of information to be sent to the host with the request without any instructions

from the client. In the same way, the responding host can include additional information with the

response, usually hidden for the receiver. The host has also capabilities to forward messages to

other programs beyond the web server for additional processing. These possibilities for

information processing behind the scene make it possible to create the additional functionality.

We shall use the term dynamic web site to emphasize that we are not concerned with a simple set

of web pages with HTML tags, but with applications in which the pages returned to the client

can be dynamically adjusted to fit the individual requests of the client. This course can serve as a

first illustration of a dynamic web site. You have already experienced that when you submitted

your personal access code entering this course, the system became accessible to you. If you had

submitted an invalid access code, however, the host would have sent you a message adjusted to

an unacceptable access code it received from you. The system must be able to compare your

identity with a pre-loaded list of authorized identities. You will soon also see that if you try to go

on to the next session before the time it is officially opened; you will receive a message

regretting that the session is not yet open. When opening date is passed, and you have passed the

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_1.jpg

17

test at the end of the session, the system will respond by giving you access to the session. The

system must be able to compare your request with its clock time and with your recorded test

performance. If a student has not yet completed the required test, the host will return a message

that the test must be done before the student can proceed. This means that the system must be

able to keep track of your previous interactions.

Important characteristics of a dynamic web site are the ability to authenticate you, i.e. to verify

your identity, to record your performance history, to react on the time for the request, to keep

track of your interactions from you start a session and to its end, and sometimes even from

session to session. The dynamic web site can be summarized by Figure 2.2.

CGI and PERL

The first step toward dynamic web pages is the possibility for a remote client to request the

execution of a process at the host. Use of the FORM tags of HTML requires, for example, that

the server can perform a processing of the data submitted on the form. A program must exist for

this purpose at the host site, and the web server must be able to communicate with this. We shall

refer to such a program which supplements the HTML pages as a script.

The Common Gateway Interface, CGI, is a protocol specifying how certain scripts can

communicate with web servers. One of the most frequently used tools for creating such scripts is

the script language PERL. A PERL script stored in the host computer can be supplied with data

from a request, for example sent by a HTML FORM page. The script can be designed to

perform a variety of tasks such as save and retrieve data from a database, update a log, keep track

of visitors, run a course, etc. It can also be designed to perform its task and then leave the result

to the web server, which returns a web page generated by means of the script to the requesting

client. Programming languages such as C, C++, C# and JAVA can also be used for creating

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_2.jpg

18

scripts. One reason for the popularity of PERL is that scripts programmed in PERL can be

ported from one operating system to another with no or little modification.

Applications Program Interfaces

A PERL-CGI application is time-consuming because PERL scripts must be loaded, executed

and unloaded each time they are used like interpretive programs, and do not offer the flexibility

which may be required.

To improve this situation, Application Servers were developed. An application server is a service

operating behind the web server. It processes script code, which the web server does not

understand, and returns the results to the web server for returning to the requesting client. The

applications server is a resource of permanently loaded executable programs, and is referred to as

an Applications Program Interface, API. The advantages of using an API compared with the

earlier interpretative programs are increased speed and flexibility because no loading and

interpretation is needed. The disadvantage is that the API programs must be implemented and

compiled separately for each type of operating system, and requires more memory space.

PHP Language

The well-known API tools include the ASP and ASP.NET from Microsoft, the open source

system PHP, iHTML from Inline Internet Systems, and ColdFusion MX from Macromedia. In

this course, we are leaving the comparisons between the tools to evaluators and sales people, and

concentrate on PHP because it is an open source tool, easily available and supported by a large

community of users. PHP was introduced in 1995 as Personal Home Pages. Since then, PHP has

been developed to a very powerful tool for treating dynamic web sites.

The language by which we design our scripts is the PHP Language. Files in which scripts are

saved are recognized by their extensions, .php. You are referred to the section Software to get

detailed instructions for installing necessary software on your own PC to be able to develop and

test your dynamic sites.

In the previous paragraph, the advantage of using a web API instead of an interpretive approach

was emphasized. PHP was introduced on the market in 1995. It started out as a scripting

language based on CGI. Later, the API was developed. The current version is PHP 5 which is a

powerful system with an embedded database system, SQLite. Be certain that you have the PHP

5 version installed.

PHP is widely used by individuals and enterprises among which there exist an active interchange

of software and experience.

http://nordbotten.net/phproot/courses/hsh/information/software/access.cfm

19

Approach in this course

Most courses and textbooks on programming and scripting languages start with the introduction

of the language syntax. We shall take another approach, learning by examples, i.e. in each

session we shall introduce a set of problems with their live solutions, and explain the syntax

required by the examples. In parallel with studying the examples and the text, the student should

read the relevant parts of the course textbook to make certain that (s)he will acquire the precise

details of the language syntax.

Simple example

Imagine an application requiring registration of some personal data from visitors and which

should be returned as confirmation of accepted data. This simple task cannot be done by use of

HTML only because the response must be adjusted to the submitted data. Figure 2.3 outlines

the application in a diagram. The diagram indicates how the communications between the user

and the host pass through the web server to the PHP scripts because the server cannot process the

in data but is needed to return the web pages to the user for display. To summarize the task:

1. Design a HTML form for acquiring the required data
2. Develop a PHP script for returning a confirmation of received data

The development of a HTML form, may result in a typical file as::

1. <html>
2. <head>
3. <title>Registration</title>
4. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
5. </head>
6. <body>
7. < !-- index.htm -->
8. <center>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_3.jpg

20

9. <h2>Registration form</h2>
10. <form action="confirm.php" method="post">
11. <table>
12. <tr><td>First name:</td><td><input name="FirstName" type="text" size="30"></td></tr>
13. <tr><td>Last name:</td><td><input name="LastName" type="text" size="30"></td></tr>
14. <tr><td>Email adress:</td><td><input name="Email" type="text" size="28"></td></tr>
15. <tr><td></td><td><input name="" type="submit" value="Submit"></td></tr>
16. </table>
17. </form>
18. </center>
19. </body>
20. </html>

The page code specifies 3 text input fields and a submit button. There is nothing special with this

code. Note that the statement in Line 10 has an ACTION attribute with value confirm.php

implying that the control is transferred to a PHP file. This tells us that an application can consist

of a mixture of .htm and .php files. By convention in this course, the first file of any example is

either named index.htm or index.php.

The purpose of the next file, confirm.php, is to instruct the server to return a confirmation for

the received data. Except for a comment line including the name of the file, it contains a short

PHP script. A PHP script is recognized by the start tag <?php and the end tag ?>. The script is

short, but introduces several basic PHP Language characteristics.

1. <!-- confirm.php -->
2. <?php
3. print("<center>");
4. print ("<h3>The following data have been received:</h3>");
5. print("<table>");
6. print ("<tr><td>First name:</td><td> $_POST[FirstName]</td></tr>");
7. print ("<tr><td>Last name: </td><td>$_POST[LastName]</td></tr>");
8. print ("<tr><td>Email address:</td> <td>$_POST[Email]</td></tr>");
9. print("</table>");
10. print("</center>");
11. ?>

These are:

 Each PHP statement line ends with semicolon.
 print() functions are used to return a message to the client.
 $_POST[] elements are used to refer to values submitted in a form.

Let us first explain the $_POST[]. All variables in PHP are recognized by $ as their first

character of their name. A name followed by [] indicates an array, and the content of the square

parentheses refers to the key for the element the value of which is contained in the expression.

$_POST[] is an auto-global array in which all variable values submitted in a HTML FORM tag

with METHOD="post". This means that the PHP automatically stores the variables in the array

and that they are available to all parts of the application.

21

Note that in PHP the elements of the returned HTML page must be enclosed as arguments

surrounded by double quotes in the print functions. If you replace the $_POST[] variables with

the values the contain, remove the print, parentheses, quotes and semicolons, you get the HTML

page returned to the client by the web server. See the Source code in your browser when running

the example.

Guessing example

We shall advance our PHP demonstration by selecting a well known type of arithmetic guessing

game. The task of the game is to guess the sum of all integers up to a random number. The

server will, on your request, return a page containing the upper limit number, one box to fill with

your name, another to fill with the sum you guess, and a button for submitting the guess to the

server. When received, the server will compare your guess with the computed sum, and return an

personalized result page to you. Figure 2.4 display the interaction between the server and the

client. Even though this example is by topic quite different from the previous the general

application structure is similar.

The dynamic features of this scenario are interesting. On request, the client is identified, the

upper limit number is computed and memorized by the server. When the response is accepted,

the server recognizes the client, compares her/his answer with the stored computed sum, and

reports back to the client. In other words, the server is able to combine two (multiple) requests

from the same client, and adjust the response two the last contact to the content of previous

requests.

Now, let us develop the solution to this problem. We obviously need:

http://nordbotten.net/phproot/courses/php_hsh/sessions/session2/images/image2_4.jpg

22

1. A PHP script to select an upper limit number and the corresponding sum of integers from 1 up
to the limit, and to compose a HTML form to return to the client adjusted for the upper limit
number selected.

2. A second PHP script that can compare the content of the returned form with the previously
computed sum, and compose a relevant response.

The first script is a mixture of 2 PHP blocks and a HTML page. It can look as follows:

1. <!-- index.php -->
2. <?php
3. srand();
4. $_SESSION['randval']=rand(10,100);
5. ?>
6. <center>
7. <h2>Guess!</h2>
8. <form action="response. php" method="post">
9. <table>
10. <tr><td>My name is:</td> <td><input type="text" name="name"></td></tr>
11. <tr><td>I guess the sum of all integers from 1 to <?php print(" $_SESSION[randval] ")

?> is:<td><input type="text" name="guess"></td></tr>
12. <tr><td></td><td><input type="submit" value="Submit"></td></tr>
13. </table>
14. </form>
15. </center>

Since this file contains PHP code, it must be named index.php. The first PHP script block is on

Lines 2-5. Line 3 is a PHP function used to get a random seed for the function on the next line.

Functions in PHP always consist of a name followed by a pair of parentheses. The parentheses

may be empty, as in this case, or contain one or more arguments. The srand() function requires

no arguments. It is not necessary to assign the results of this function to any variable because we

shall not need to refer explicitly to the seed.

Line 4 assigns the outcome of a second built in function, rand(10,100). This function, which

requires 2 arguments, generates a random integer between 10 and 100, and assign the result to

the variable, $_SESSION['randvalue']. From the previous example we know that the $ means

that it is a variable, and the [] indicates that the variable is stored in an array.

The SESSION[] array is used to store all variables which we want to access at different

occasions during a session. Like the $_POST[] array, the $_SESSION[] array variables are

super global variables (It is assumed that you during configuration set the session_auto_start to

ON in the php.ini during installation).The session variables are kept for a default period up to

1440 second (24 minutes) after which the session cookie expires. The server's recognition of a

client is obtained by means of cookies, which is returned with the server's response to the first

request from the client, and then connected to all requests from the client within the session.

Following the first PHP block, is a HTML form with an embedded PHP block, <?php

print(" $_SESSION[randval] ") ?> embedded in Line 11. The reason for including

23

this script in the middle of an HTML expression is that we want to include the PHP variable

$_SESSION[randvalue] to be displayed for the client. Note that within double quotes, as in the

print argument, single quotes are not used around the array keys, e.g. in

$_SESSION[randvalue].

The form calls upon the second script, response.php, which follows.

1. <!-- response.php -->
2. <?php
3. $sum="0";
4. for ($count=1;$count<=$_SESSION['randval'];$count++) {
5. $sum=$sum + $count;
6. }
7. if ($sum == $_POST['guess']) {
8. echo "$_POST[name], your guess was correct!";
9. }
10. elseif ($sum > $_POST['guess']) {
11. echo "Sorry, $_POST[name], your guess $_POST[guess] is too low, the correct sum is

$sum";
12. }
13. else {
14. echo "Sorry, $_POST[name], your guess $_POST[guess] is too high, the correct sum is

$sum";
15. }
16. ?>

The Lines 3 - 5 compute the correct sum associated with the generated upper limit integer,

$_SESSION[randval] by looping trough a for loop with an index variable named $count which

is increased by 1 using the incremental operator ++, and for each loop the $sum is increased by

the current index number.

Lines 7 – 16 contain a test of the guess submitted, and return an answer to the client. Three

alternatives are possible: Line 8 will be sent as an HTML page to the client if the sum guessed is

correct, elseif the guess is less than the correct sum, Line 11 will be executed, and, finally, if the

guess is too high, Line 1 is used for response to the client.

The last script illustrates how PHP can solve dynamic tasks by using$_POST[] and

$_SESSION[] variables. Both these arrays contain global variables, i.e. variables which are

persistent during the client's session, an important requirement for dynamic application

development.

24

Session 3: Dynamic application without database

Market research

In this session, the introduction of PHP will be continued, and the scenario we shall use is online

collection of data for market research. The marketing problem concerns 2 products, A and B, and

we are interested in measuring the consumers' relative preferences for the two competing

products. However, we have a suspicion that the respondents may have a tendency to vote for the

product listed first. We want to randomize the sequence, i.e., AB and BA, to eliminate this effect.

The persistence of the preference is another question we want to study. For this reason, we want

the respondents to repeat their preference vote a certain time, e.g. a week, after the first vote. To

attract consumers to provide their votes of preference, those who complete the 2 votes are

eligible for participation in a lottery.

A file of responses must be built in which the 2 votes of the individual consumers can be

connected by mean of a unique identifier for comparing responses as well as a file with name

and addresses for those who are eligible for lottery participation.

Since this is a course focusing on design and development of dynamic web sites, the important

questions about how to obtain representative participants and how many, are ignored. Also the

questions about the evaluation of the reliability of the results are considered outside our scope in

this course.

System design

Figure 3.1 gives an overall idea about how we want to solve the task outlined above. There are 2

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_1.jpg

25

application parts which are both connected to the same 2 data files The implementation will

consist of sets of .php, .htm and .txt files demonstrating how it is possible to mix different types

of files in the same application which will be presented and discussed in the following order:

Market_research:

 index.php
 prepare.php
 save.php
 form3.htm
 save3.php

Market_analysis:

 index.htm
 report.php
 report2.htm

Common text files:

 responses.txt
 addresses.txt

We use the convention introduced in the first session, and name the first file index.php which

give us the advantage that we can open the application by calling the folder in which all the files

reside. The files reflect the 3 sets of files, the user module, market_research, the administration

module, market_analysis, and the data files as outlined in Figure 3.1. In addition, some global

arrays of variables (i.e.,. $_POST[], $_SESSION[] and $_COOCKIE[]) exist for creating

persistency in the application.

The 2 .txt files do not exist initially. but is generated when the first data are collected.

Market research

Figure 3.2 gives a simplified picture of the Market Research part of the application. The index

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_1.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_2.jpg

26

page is used to send the users instructions about what to do. Since there are 3 questionnaires to

be completed by the participants in the research survey, we define a variable,

$_SESSION['marker'], in Line 4 to keep track of which questionnaire is the current. This

variable is an element of a global array used for making variable values persistent for access in

several scripts during a session. Line 3 test by means of a function isset() if

$_SESSION['marker'] has been defined, and if not define and set the variable to 1.

Next, observe that except for the 3 if statements, the remaining of this PHP script prepares 3

alternative HTML pages for display using the print() function. Line 6 prepares the first

common part of the HTML page to be returned to the client, while the Lines 7, 10 and 13 test

which questionnaire should be offered the user. Depending on the value of the marker

variable, Line 8, 11 or 14 is sent with a tag linking to the appropriate questionnaire. If you study

these print statements carefully, you may be surprised by noticing that there are no double quotes

around the files to which the A tags refer. Expressions already enclosed in the double quotes of a

PHP statements, should not contain any double quotes.

1. <!-- index.php -->
2. <?php
3. if(!isset($_SESSION['marker'])) {
4. $_SESSION['marker']=1;
5. }
6. print("<center><h2>Market research</h2></center>p>This is a market

research to investigate the public's preferences for Product A and Product B. If you respond and
complete two questionnaires, you will be eligible to participate in a lottery. The requirements
are:</p>");

7. if($_SESSION['marker']==1) {
8. print("Request, complete and submit questionnaire 1");
9. }
10. if($_SESSION['marker']==2) {
11. print("Request, complete and submit questionnaire 2");
12. }
13. if($_SESSION['marker']==3) {

27

14. print("Request, complete and submit questionnaire 3");
15. }
16. print(" <p>The 2 first questionnaires require you make a single click only before you submit your

response. The third questionnaire asks for you e-mail address for notification in case you become a
winner in the lottery.</p><p><i>The market research sets a time-limited cookie in your
browser.</i></p>");

17. ?>

index.php does not contain any other new PHP features, and we can proceed to the next script,

which is the prepare.php. The purpose of this script is to prepare the 3 different questionnaires

and keep track of which should be served.

Already the first line introduces an important new feature, i.e. the use of cookies. A cookie is a

small message sent from the server to the client browser providing the receiving client with a

unique identifier, a time- out specification and an identification of the server issuing the cookie.

Cookies are kept in a special list in the computer, and deleted when timed out.

Before a browser sends a request to a server, its list of cookies is checked for any cookies from

the server approached. If a relevant cookie is found, it is copied and attached to the request. The

server receiving a request and scans the request for cookies. When a cookie is detected, the

server has received a user identification.

In this way, it is possible to link items in a chain of interactions between the server and an

individual client. Since the server is issuing and distributing cookies, the anonymity of the client

can be maintained. In our application, we ask the client to answer our questions at 2 different

occasions. We can link the answers by means of a cookie without inquiring about the name or

other identification from the client assuming the client is using the same computer and is the only

user of the computer.

In Line 3 - 6, we ask if the requesting client has a cookie called user_id, and, if not, prepare in

Line 4 a cookie to be returned to the client with the response to its request. The name of the

cookie to be sent is user_id and its unique value is the exact time obtained by the PHP function

time() in Line 4, at the moment the cookie is set. In the function setcookie(), we specify the

name of this cookie, in our application user_id, the value of the cookie, and the lifetime of the

cookie. The value of the user_id must of course be unique. On way of obtaining such a value is

to use the time when the cookie was set. This time value is available from the function time() in

Line 4. This value is also used in the third argument in which a number of seconds are added to

determine when the cookie should be deleted. In our particular application, the second preference

form should be answered one week after the first at which the cookie is set and the timeout point

should be 8 days later.

It is important that only one cookie is set for each visitor, and for that reason a test is made in

Line 3 for the existence of the particular application cookie, $_COOKIE['user_id']. If it already

is set, Line 4 and 5 are not executed.

28

1. <!-- prepare.php -->
2. <?php
3. if(!isset($_COOKIE['user_id'])) {
4. $time=time();
5. setcookie('user_id',"$time", "$time" + 60);
6. }
7. rand();
8. $randval=rand(1,2);
9. $_SESSION['marker']++;
10. print("<center><h2>Preference for products</h2></center><p>Thank you for

visiting this page and expressing your opinion. Complete and submit this form. The second
questionnaire should be completed one week after the first.</p> <FORM ACTION=save.php
method=post>

11. <p>Please mark your preference by clicking a button. Comparing the 2 products A and B, I
prefer:</p>");

12. if($randval == "1") {
13. print("<p><INPUT TYPE=Radio NAME=preference VALUE=A> Product A</p>
14. <p><INPUT TYPE=Radio NAME=preference VALUE=B> Product B</p><INPUT YPE=hidden

NAME=form_type VALUE=1>");
15. }
16. else{
17. print("<p><INPUT TYPE=Radio NAME=preference VALUE=B> Product B</p>
18. <p><INPUT TYPE=Radio NAME=preference VALUE=A> Product A</p><INPUT TYPE=hidden

NAME=form_type VALUE=2>");
19. }
20. print("<p><INPUT TYPE=submit NAME=SUBMIT VALUE=Submit></p>
21. </FORM>");

22. ?>

The last point to be mentioned is the incremental operator ++ used in Line 9 well known from

other languages. This line is equivalent to the longer statement

$_SESSION['marker']=$_SESSION['marker'] + 1;. The questionnaires transformed to HTML form

in Line 10, 13 and 17 are served to the clients depending on the value of $_

SESSION['marker'] incremented in this way.

The returned responses from the clients are taken care of by the script save.php. The answers to

the questionnaires 1 and 2 are saved in response.txt. If the file does not exist, it is established by

the PHP function touch(). Before any file can be operated on, it must be opened by means of the

fopen() function which requires 2 arguments, the file name and the action. There are 2 write

action available, write from the beginning and append to the end of the file indicated by "w" an

"a", respectively. In Line 6 the response.txt is opened for append of data. The fopen() returns a

handle or reference, in this script called $f, and which is used in the file action function fwrite()

in Line 7.

1. <!-- save.php -->
2. <?php
3. if(! file_exists("response.txt")) {
4. touch("response.txt");
5. }
6. $f=fopen("response.txt","a");

29

7. fwrite($f,"User id: $_COOKIE[user_id], Form type: $_POST[form_type], Preference:
$_POST[preference]\n");

8. ?>
9. <center>
10. <p> Return to introduction.</p>

11. </center>

fwrite() is the PHP function used for writing to a file. It requires 2 arguments, the file handle

and a string of the items to be written to the file. In Line 7, the write function in this script, the

first argument is the file handler $f just established in the previous line, and a string of 3

name/value pairs for User_id, Form type and Preference, all with global variable values and

delimited by commas. These are the 3 items in which we are interested in. Note the end of line

symbol, \n, at the end of the string to get a line shift after each record.

In the example, you can return to complete questionnaire 2 immediately. In a real application in

which we would like to observe the preference change during a week, we would design some

kind of program which would remind the client about the second questionnaire in a week.

The registration of the participants of the lottery, implemented in form3.htm, is sent to the client

when both data collection forms have been returned is a simple form calling save2.php. It

returns the submitted name and email address by METHOD="post" in order to be easily

available by save2.php.

1. <!-- form3.htm -->
2. <center><h2>Your e-mail address</h2></center>
3. <p>If you are eligible for participating in the lottery, i.e. you have requested, completed and submitted

the two questionnaires, we need your e-mail address to notify you in case you become a winner in the
lottery.</p>

4. <form action="save2.php" method="post">
5. <table>
6. <tr><td>Your name:</td><td><input type="Text" name="myname"></td></tr>
7. <tr><td>e-mail address:</td><td><input type="Text" name="myemail"></td></tr>
8. <tr><td></td><td><input type="Submit" value="Submit"></td></tr>
9. </table>

10. </form>

The save2.php script is very similar to the already discussed save.php. It resets the marker to the

initial value 1 and thanks the client for his/her participation.

1. <!-- save2.php -->
2. <?php
3. if(! file_exists("address.txt")) {
4. touch("address.txt");
5. }
6. $a=fopen("address.txt","a");
7. fwrite($a,"user id: $_COOKIE[user_id], Name: $_POST[myname], Email address: $_POST[myemail]\n ");
8. $_SESSION['marker']=1;

30

9. ?>
10. <center>
11. <p> Thank you for your participation. You will be included in the

lottery.</p>

12. </center>

Market analysis

The scripts so far have been aimed at collecting the preferences of the participants of the market

research survey. However, we need also to have tools for retrieving the collected data for

analysis. The second part of the application in this session is named Market_analysis (In fact, it

is not an analysis, but a data retrieval): Figure 3.3 gives an overview of this part of the

application. It starts with a simple HTML page, index.htm, which offers 2 options. The first

activates the script report.php which prints the text file response.txt, the second starts

report2.php which prints the text file address.txt.

The index.htm is an ordinary HTML page which links the 2 alternative scripts, report.php and

report2.php.

1. <!-- index.htm -->
2. <html>
3. <head>
4. <title>index.htm</title>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session3/images/image3_3.jpg

31

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6. </head>
7. <body>
8. <center>
9. <h3>Data results</h3>
10. <p>There are 2 results available from market research online data collection:</p>
11. table>
12. <tr><td>1. Results from the research</td></tr>
13. <tr><td>2. List of qualified contestants</td></tr>
14. </table>
15. </center>
16. </body>
17. </html>

The report.php script lists the data as recorded by save php. This time, we open the file for

reading by the parameter "r". By means of a while block, Line 4-7, using the function feof($r)

as the core of the condition, the file is read line by line until the end of file is appearing. Each

line is retrieved by the function fgets(), and sent for display.

1. <!-- report.php -->
2. <?php
3. $r=fopen('../market_research/response.txt', 'r');
4. while(!feof($r)) {
5. $line=fgets($r);
6. print("$line
");
7. }
8. print("<center>
9. <p> Return to menu.</p>
10. </center>");

11. ?>

The second script, report2.php, differs only in the specification of the file, address.txt, to be

read. The lines read by this script have the content as written by save2.php.

1. <!-- report2.php -->
2. <?php
3. $r=fopen('../market_research/address.txt', 'r');
4. while(!feof($r)) {
5. $line=fgets($r);
6. print("$line
");
7. }
8. print("<center>
9. <p> Return to menu.</p>
10. </center>");

11. ?>

This application is characterized by reading the records serially to the server during the

collection of data, and retrieving the results in the same order from the server after the collection

has been completed. In many applications data already saved are updated in a random order as

32

well as requested in a non-serial order. For such application, use of a database will usually be a

better solution and will be the topic of the next sessions.

33

Session 4: Introducing the MySQL database

Dynamic applications and databases

In previous sessions, we have studied examples of dynamic applications in which have made use

of session variables to adjust the pages returned to the client dynamically to data provided , and

use of files to store data permanently. The use of files can have serious drawbacks since reading

or updating a record may require that the whole file must be searched.

Using a database instead of a file or a set of files makes it possible to retrieve or update a single

record. A database has usually its own software, the Data Base Management System, which

operates on the data. The most popular database used in connection with PHP is MySQL,

which is another open source and free software. Commercial database software frequently used

with PHP is POSTGRESS, ORACLE and SyBASE. All these database systems require

separate installation.

MySQL must also be installed separately from PHP which has also to be configured to connect

and operate with MySQL. Assuming that you have successfully installed MySQL as indicated

in Information -> Software, the fundamentals of the use of the system will be introduced by

means of a very simple example in the next sections.

Creation of a reference database to you personal library.

Most people buy and collect books. The collection can contain books belonging to different

categories such as poetry, prose, fiction, science fiction, historic and contemporary

documentaries, information systems methodology, web applications, databases management

systems, theoretical and applied research, and many other genres. From time to time, we want to

return to a book(s). When we recall the author's name or the title of the book the search may be

easy. In some situations we may, however, only recall certain aspects discussed which make the

search more difficult. A book reference system can then be of great assistance. A model for a

book system is presented in Figure 4.1.

As an introductory example to databases, we shall create a MySQL database, named books,

which we can populate with the necessary data about each book in our personal library. We shall

need the following files for our web application:

 HTM page with example menu
 HTM page recording data about a book
 PHP script for creating the database, and adding data recorded for a book
 HTML page for requesting a list of rows from the database
 PHP script for retrieving the rows and responding to the request
 HTML page for requesting data about a book(s)
 PHP script for retrieving the requested data from the database, and sending it to for display to

the client

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_1.jpg

34

 HTML page to modify or delete a record(s) in the database
 PHP script for executing the modification/deletion

 Figure 4.1: Adding records

The application is fully functional, but you should consider making your personal modifications

to the design before you start recording data for your personal library.

Menu page

The index.htm is a very simple HTML page displaying a menu with links to the different parts

of the reference system::

1. <!-- index.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3. "http://www.w3.org/TR/html4/loose.dtd">
4. <html>
5. <head>
6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
7. <title>Untitled Document</title></head>
8. <body>
9. <center>
10. <h2>Menu for the book database</h2>
11. <p>The following menu lists the alternatives available for the database books. </p>
12. <table>
13. <tr><td>Insert book data to a to database row.</td></tr>
14. <tr><td>List all rows in the book database.</td></tr>
15. <tr><td>Search for a row of data in the database.</td></tr>
16. <tr><td>Update a row in the database.</td></tr>
17. <tr><td>Delete a row from the database.</td></tr>
18. <tr><td>Remove database content.</td></tr>
19. </table>
20. </center>
21. </body>

22. </html>

35

To obtain a nice visual impression, the links are embedded in a table.You can see the menu in

Figure 4.2. No further explanation of this form should be required at this stage.

 Figure 4.2: List of book references

Creating and populating a database

Let us start studying the creation of a bibliographic database. There are international standards

and protocols for the content required for professional bibliographic databases. In this example,

we shall ignore the standards and only specify elements needed in a database for private use. It

must obviously contain such data as the name of the author(s), the book title, the publisher's

name, when printed, and the number of pages.

We may also want to be able to make a rough distinction about the categories of books. You are

free to establish your own codes for categories, evaluation and locations of the books. The

add.htm is the HTML pages used for submitting the recorded data to the server.

1. <!-- add.htm -->
2. <center><h3>Adding records to database</h3>
3. <p>This form is used to add a reference to a new book in the database. The database will be

automatically established the first time this system is used. </p>
4. <p>You are free to develop your own categories, evaluation and location codes.The location code can

be a combination of text and a number, for example Bookshelf_a_33. </p>
5. <form action="add.php" method="post">
6. <table>
7. <tr><td>Name(s) of author(s) : </td><td><input name="author" type="text"></td></tr>
8. <tr><td>Title of book : </td><td><input name="title" type="text"></td></tr>
9. <tr><td>Publisher: </td><td><input name="publisher" type="text"></td></tr>
10. <tr><td>Year of publication : </td><td><input name="year" type="text"></td></tr>
11. <tr><td>Number of pages: </td><td><input name="pages" type="text"></td></tr>
12. <tr><td>Category: </td><td><input name="category" type="text"></td></tr>
13. <tr><td>Date read : </td><td><input name="dateread" type="text"></td></tr>
14. <tr><td>Evaluation: </td><td><input name="evaluation" type="text"></td></tr>
15. <tr><td>Book location : </td><td><input name="location" type="text"></td></tr>
16. <tr><td>Submit reference t:</td><td><input name="" type="submit"

value="Submit"></td></tr></table></form>
17. <p>Return to menu.</p>

18. </center>

The 9 named values in the form block Line 7- 15 are submitted to the server for processing by

means of the add.php script. See Figure 4.3.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_2.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_3.jpg

36

 Figure 4.3: Search for a book reference

The add.php is our first step into the world of MySQL. Let us first select a name, books, for our

database, and booktable as the name of the single table in this simple database.

1. <!-- add.php -->
2. <?php
3. print("<center>");

4. $link=my_sql("localhost","root","password");
5. if(!$link) die("<h3>You must install MySQL</h3>");
6. $db_selected=mysql_select_db("books", $link);
7. if (!$db_selected) {
8. mysql_query("CREATE DATABASE books",$link);
9. mysql_select_db("books", $link);
10. mysql_query("CREATE TABLE booktable(id INT AUTO_INCREMENT, author VARCHAR(30), title

VARCHAR(30), publisher VARCHAR(30), year VARCHAR(30), pages VARCHAR(30), catagory
VARCHAR(30), dateread VARCHAR(30), evaluation VARCHAR(30), location VARCHAR(30))", $link);

11. }
12. mysql_query("INSERT INTO booktable(author,title, publisher, year, pages, category, dateread,

evaluation, location)
VALUES('$_POST[author]','$_POST[title]','$_POST[publisher]','$_POST[year]','$_POST[pages]',
'$_POST[category]','$_POST[dateread]','$_POST[evaluation]','$_POST[location]')", $link);

13. mysql_close($link);
14. print("");
15. print ("<h3>The book record has been inserted . </h3>");
16. print("<p></p>");
17. print("Return to menu.");
18. print("</center>");

19. ?>

The first mysql statement in Line 4 establishes the necessary connection between PHP and

MySQL and returns a reference, $link, which should be referred to in most mysql statements.

The function requires 3 arguments: localhost, a user name root, and the password you submitted

when you configured MySQL. In the remaining of this course you must always substitute

'password in this function with your private MySQL password!

37

If a connection cannot be established, we use the PHP function die() to inform the user and

break the processing. The purpose of function mysql_select_db() in Line 6 is to select/open the

database (there may be several in your MySQL!) we want to work with. The success of the

selection is tested in the next line and if the database in our context cannot be selected, we

assume that it does not exist. By means of a mysql_query() function, the database is created by

an SQL statement and a reference to the connection in Line 8. The mysql_select_db() must be

repeated and now we can expect that it is successful. Line 10 is another use of the mysql()

function by which we create a table, booktable, in our database. Note that in a parenthesis of the

specified table name, the name and type of each table column follow according to the SQL

conventions.

The first column is for the variable id. This variable type is special, INT

AUTO_INCREMENT, which means that each row inserted will be numbered consecutively.

All the other 9 variables are of type VARCHAR(30). Many other possibilities exist. The number

of pages could for instance be specified as INT. VARCHAR(30) specifies character strings of

varying length up to 30 characters. We are now ready to start inserting data into the database.

In the mysql_query() function in Line 12 , the 9 variable values received from the client are

added to the booktable by means of an SQL INSERT statement. Several aspects of this function

should be noted. First, the variable id introduced in Line 10, should not to be specified because

it is automatically inserted. Second, it is very important that the SQL syntax is correct. In

particular, remember to enclose all values of type VARCHAR and other string types in single

quotes, and do NOT use single quotes within the $_POST[] because the INSERT statement

itself is enclosed by double quotes. Third, be also certain that the elements in booktable(..)

matches the values in VALUES(..).

The last remark about this script is that as a general rule in an interactive application, if a

connection between PHP and MySQL has been established, a mysql_close() function should be

activated before entering a new page.

Listing the content of the database

The request for a list of all rows in the database does not require any additional data, and list.php

can be called directly from the menu, index.htm.

1. <!-- list.php -->
2. <?php
3. print("<center>");

4. $link=mysql_connect("localhost","root","password");
5. if ($link) die("<h3><font color=red)You must install MySQL.</h3>");
6. $db_selected=mysql_select_db("book", $link);
7. if (!$db_selected) {
8. print("<h3>Database does not exist.</h3>")
9. else {
10. $r = mysql_query("SELECT * FROM booktable", $link);

38

11. if (!$r) {
12. print("<h3>Booktable does not exist</h3>");
13. }
14. else {
15. print("<h2>List of panel members</h2>
16. <table border>
17. <tr><Th>Id<Th>Author</Th><Th>Title</Th><Th>Publisher</Th><Th>Year</Th><Th>Pages</Th><Th

>Category</Th><Th>Date read></Th><Th>Evaluation</Th><Th>Location</Th></tr>");
18. while ($row = mysql_fetch_array($r)) {
19. print("<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td><td>$row[3]</td><td>$row[4]</td><t

d>$row[5]</td><td> $row[6] </td><td>$row[7]</td><td>$row[8]</td><td>$row[9]</td>");
20. }
21. }
22. print("</table>");
23. }
24. mysql_close($link);
25. print("<p></p>");
26. print("Return to menu.");
27. print('</center>');

28. ?>

As in the previous script, the MySQL must be connected and the database books selected. Then

in Line 10 a mysql_query() function is called with an embedded SQL SELECT statement as

argument. The * indicates that all table rows are wanted. The result of this selection is referred to

by the reference/handle $r which is tested for the existence of rows. If there are rows in the

table, they are processed one by one in the PHP while statement in Line 18. As long as there are

any rows left in $r, mysql_fetch_array() will fetch on row separately and assign it to array

$row[] to be presented to the user in the table specified in Lines 15-22. Note that the first

element of an array is 0. Figure 4.4 illustrates a very short list.

Figure 4.4: Correct required attributes

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_4.jpg

39

Searching the database for a book reference.

In a large collection of books, it can be difficult to decide which book is relevant for a particular

situation and perhaps also find its physical location. We need a search function. The link to

searching of the menu in index.htm points to search.htm:

1. <!-- search.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
3. <<html>
4. <head>
5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6. <title>Untitled Document</title>
7. </head>
8. <body>
9. <center>
10. <h2>Search for a reference to a book.</h2>
11. <p>By specifying author, title, publisher, publishing year, category, and keywords the application can

retrieve relevant book reference(s) if any.</p>
12. <form action="search.php" method="post">
13. <table>
14. <tr><td>Name(s) of author(s) : </td><td><input name="author" type="text"

value="unspecified"></td></tr>
15. <tr><td>Title of book : </td><td><input name="title" type="text" value="unspecified"></td></tr>
16. <tr><td>Publisher: </td><td><input name="publisher" type="text" value="unspecified"></td></tr>
17. <tr><td>Year of publication : </td><td><input name="year" type="text"

value="unspecified"></td></tr>
18. <tr><td>Number of pages: </td><td><input name="pages" type="text" value="unspecified"></td></tr>
19. <tr><td>Category: </td><td><input name="category" type="text" value="unspecified"></td></tr>
20. <tr><td>Date read : </td><td><input name="dateread" type="text" value="unspecified"></td></tr>
21. <tr><td>Evaluation: </td><td><input name="evaluation" type="text" value="unspecified"></td></tr>
22. <tr><td>Book location : </td><td><input name="location" type="text" value="unspecified"></td></tr>
23. <tr><td>Submit search criteria:</td><td><input name="" type="submit"

value="Submit"></td></tr></table>
24. </form>
25. <p>Return to menu.</p>
26. </center>
27. </body>

28. </html>

The search.htm is an ordinary HTML form page, but we specify the default string value

unspecified for each variable. The default value(s) must be changed to the value associated with

the book(s) searched. If for example web applications is used as category for books in this field,

and we want to localize books published in 2005 in our library, Year of publication should be

changed to 2005, and Category to web applications. Or, if we search books of Sklar, David, we

substitute unspecified with Sklar, David in the author box. Since the probability for any saved

value should match this string it works in our application. See the search form in Figure 4.5

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_5.jpg

40

Figure 4.5: Search for a reference to a book

When the request is submitted, it calls for search.php to process the re guest.

1. <!-- search.php -->
2. <?php
3. print("<center>");
4. $link=mysql_connect("localhost","root","password");
5. if (!$link) die("<h3>You must install MySQL. </h3>");
6. if (!mysql_select_db("books") die("Database books does not exist.");
7. print("<h3>List of requested rows.</h3>
8. <table border>
9. <tr><Th>Id<Th>Author<Th>Title<Th>Publisher<Th>Year<Th>Pages<Th>Category<Th>Date

read<Th>Evaluation<Th>Location</tr>");
10. $r=mysql_query("SELECT * FROM booktable WHERE ((author='$_POST[author]') | (title='$_POST[title]')

| (publisher ='$_POST[publisher]') | (year='$_POST[year]') | (pages='$_POST[pages]') |
(category='$_POST[category]') | (dateread='$_POST[dateread]') | (evaluation='$_POST[evaluation]') |
(location='$_POST[location]'))", $link);

11. while ($row=mysql_fetch_array($r)){
12. print("<tr><td> $row[0] <td> $row[1] <td> $row[2] <td> $row[3] <td> $row[4] <td> $row[5] <td>

$row[6] <td> $row[7] <td> $row[8] <td> $row[9]");
13. }
14. print("</table>");
15. mysql_close($link);
16. print("<p></p>");
17. print("Return to menu.");
18. print('</center>');

19. ?>

The mysql_query() in Line 10, includes a WHERE clause with a composite OR condition (the

symbol used for OR is |). Note that if we had used another logical operator as AND the trick

using unspecified as default value in the form would not have worked. We use again the while()

function to transfer the results referenced by $r to an array $row[] for presenting the results in a

table for the user. The search result is illustrated by Figure 4.6.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_6.jpg

41

Figure 4.6: List of requested rows

Updating book references in the database

In our book reference library, there may be a need for changing or updating a row because of

typos, incorrect data, revaluation of the referenced book, etc. Our solution to this task requires 1

HTM page and 2 PHP scripts.

The update.htm is an ordinary page which requires that you have the id of the row reference. See

Figure 4.7.

 Figure 4.7: Update a row in the book database

1. <!-- update.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
3. <html>
4. <head>
5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6. <title>Untitled Document</title>
7. </head>
8. <center>
9. <h2>Update a row in the book database</h2>
10. <p>Note the Id number of the row you want to to update and type it in the box:
11. <form action="update1.php" method="post">
12. <input name="id" type="text"><input name="" type="submit" value="Submit"> <p></p>
13. </form>
14. <p>Return to menu.</p>
15. </center>
16. <body>
17. </body>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_7.jpg

42

18. </html>

There is nothing new in this page, and we note that Lines 12-13 call for processing of a row

corresponding to the submitted id value by the script update1.php:

1. <!-- update1.php -->
2. <?php
3. print("<center>");
4. $link=mysql_connect("localhost","root","password");
5. if(!$link) die("<h3> You must install MySQL. </h3>)";
6. $db_selected=mysql_select_db("books");
7. if(!$db_selected) die(<h3>Databas booksdoes not exist.</h3>);
8. $id=$_POST['id'];
9. $r=mysql_query("SELECT * FROM booktable WHERE id='$id'", $link);
10. while($row=mysql_fetch_array($r)) {
11. $author=$row[1];
12. $title=$row[2];
13. $publisher=$row[3];
14. $year=$row[4];
15. $pages=$row[5];
16. $category=$row[6];
17. $dateread=$row[7];
18. $evaluation=$row[8];
19. $location=$row[9];
20. }
21. print("<h2><p>Correct the required attributes.</h2></p>");
22. print("<form action=update2.php method=post>
23. <table>
24. <tr><td>Row Id: </td><td><input name=id type=text value=$id></td></tr>
25. <tr><td>Name(s) of author(s) : </td><td><input name=author type=text value=$author></td></tr>
26. <tr><td>Title of book : </td><td><input name=title type=text value=$title></td></tr>
27. <tr><td>Publisher: </td><td><input name=publisher type=text value=$publisher></td></tr>
28. <tr><td>Year of publication : </td><td><input name=year type=text value=$year></td></tr>
29. <tr><td>Number of pages: </td><td><input name=pages type=text value=pages></td></tr>
30. <tr><td>Category: </td><td><input name=category type=text value=$category></td></tr>
31. <tr><td>Date read : </td><td><input name=dateread type=text value=$dateread></td></tr>
32. <tr><td>Evaluation: </td><td><input name=evaluation type=text value=$evaluation></td></tr>
33. <tr><td>Book location : </td><td><input name=location type=text value=$location></td></tr>
34. <tr><td>Submit data:</td><td><input type=submit value=Submit></td></tr>
35. </table></form><p></p>");
36. print("Return to menu.");
37. print("</center>");

38. ?>

The aim of this first update script is to return a form to the user with all current data of row $id to

the client for inspection, correction and submittal to the server. Lines 9-20 retrieve the data from

the database and establish local variables to be used for creating the form. Because the form must

be sent in HTML format to the client, the long print() function in Lines 22- 35 is used to send

the HTML tags within double quotes. PHP automatically equips the contents of these HTML

tags with required quotes, and we must therefore remove all quotes in the tags.

43

According to the specifications, a form is displayed at the user's screen with all current variable

values. The user can change or leave the values. The form is submitted for processing by

update2.php:

1. <!-- update2.php -->
2. <?php
3. print("<center>");
4. $link=mysql_connect("localhost","root","password");
5. if (!$link) die("<h3> You must install MySQL.</h3>")
6. $db_selected=mysql_select_db("books";
7. if (!$db_selected) die("<h3>Database books does not exist.</h3>");
8. $n=mysql_query("SELECT * FROM booktable", $link);
9. if [mysql_nun_rows($n) == 0) die("<h3>Table is empty.</h3>");
10. mysql_query("UPDATE booktable
11. SET
12. id='$_POST[id]',
13. author='$_POST[author]',
14. title='$_POST[title]',
15. publisher='$_POST[publisher]',
16. year='$_POST[year]',
17. pages='$_POST[pages]',
18. category='$_POST[category]',
19. dateread='$_POST[dateread]',
20. evaluation='$_POST[evaluation]',
21. location='$_POST[location]'
22. WHERE id='$_POST[id]'", $link);
23. mysql_close($link);
24. print ("<h3> Data for book with Id $_POST[id] has been updated.</h3>");
25. print("Return to menu.");
26. print("</center>");
27. ?>

This script is similar to add.php but uses a mysql_query() with the SQL UPDATE statement in

Lines 10-22 to change an existing row instead of the INSERT statement of add.php which adds

a new row to the database. It uses SET with subsequent variable-value pairs for updating values

in the row specified by the WHERE clause. As for the INSERT statement, it is very important

that all values are enclosed by single quotes if they were defined as strings in the CREATE

TABLE statement. Figure 4.8 illustrates the page with data which can be updated before

submitted.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_8.jpg

44

 Figure 4.8: Correct the required attributes

Deleting rows in the database

Just as we need operations for adding and updating a row, an operation for deleting a row is

wanted. Before we can start the operation, the $id of the row to be deleted must be found. It can

be obtained by the list option. delete.htm is an HTML page for specifying the $id of a row

wanted to be deleted.

1. <!-- delete.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">
3. <html>
4. <head>
5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6. <title>Untitled Document</title>
7. </head>
8. <center>
9. <h2>Delete a row in the book database</h2>
10. <p>Note the Id number of the row you want to to delete and type it in the box:
11. <form action="delete.php" method="post">
12. <input name="id" type="text"><input name="" type="submit" value="Submit"> <p></p>
13. </form>
14. <p>Return to menu.</p>
15. ></center>
16. <body>

45

17. </body>

18. </html>

Figure 4.9: Delete a row in the book database

The page is simple (See Figure 4.9) and sends an $id with a request for processing by the

delete.php scipt:

1. <!-- delete.php -->
2. <?php
3. print("<center>");
4. $link=mysql_connect("localhost","root","password");
5. if (!$link) die("<h3>You must install MySQL.</h3>"
6. $db_selected=mysql_select_db("books", $link);
7. if (!$db_selected) die("<h3>Database books does not exist.</h3>");
8. $r=mysql_query("DELETE FROM booktable WHERE id=='$_POST[id]'", $link);
9. if (!r) {
10. print("<h3>The row does not exist.</h3>");
11. }
12. else {
13. print("<h2>Row $_POST[id] has been removed from database books.</h2>");
14. }
15. print("<p></p>Return to menu.");
16. print("</center>");
17. mysql_close($link);

18. ?>

In an mysql_query() of Line 8, the SQL DELETE statement controls the deletion of the row

specified in its WHERE clause.

Removing database

It is also possible to instruct the server to remove the database books. The HTML page

remove.htm used is simple:

1. <!-- remove.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_9.jpg

46

3. "http://www.w3.org/TR/html4/loose.dtd">
4. <html>
5. <head>
6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
7. <title>Untitled Document</title>
8. </head>

9. <center>
10. <h2>Remove the database books </h2>
11. <p>Note that all book references in your database will be lost by executing this

operation.</p>
12. <form action="remove.php" method="post">
13. Remove all content:<input name="" type="submit" value="Submit"> <p></p>
14. </form>
15. <p>Return to menu.</p>
16. </center>
17. <body>
18. </body>

19. </html>

The page is shown in Figure 4.10, and requires no explanations. It calls upon an even shorter

remove.php script.

 Figure 4.10: Remove database content

1. <!-- remove.php -->
2. <?php
3. print("<center>");
4. $link=mysql_connect("localhost","root","password") die("<h3>You are not

connected to MySQL. </h3>");
5. $db_selected=mysql_select_db($link) die ("<h3>Database books does not

exist. </h3>");
6. $r=mysql_query("DROP DATABASE books"; $link);
7. print("<h2>Database content has been removed.</h2>");
8. print("<p></p>Return to menu.</center>");
9. mysql_close($link);

10. ?>

This script introduces another new SQL statement, DROP TABLE, which only requires the

name of the table.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session4/images/image4_10.jpg

47

 Session 5: Polling with MySQL database

Opinion polls

In session 2, we studied a market research example which did not require any data base backup.

In this session we shall consider a similar scenario: a polling organization the aim of which is to

collect the public opinion about the preferences for 5 political parties (or product brands) A, B,

C, D, and E.

The organization uses a panel with a fixed number of members as basis for its services. A file

with separate records for each panel members is kept in a database. Each Monday a list of panel

members with their contact addresses is retrieved and used by interviewers who in telephone

interviews asking panel members which party the member would have voted for if there had

been a public vote, or in case of products which product they would have purchased, that

Monday. The answers are subsequently saved in the database for retrieval, computation and

publication of statistics to subscribing clients each Wednesday. The panel members can be

stratified by age and area in which they live.

Use of a panel gives usually more precise estimates of the political time fluctuations than a

random sample would do. However, to avoid that the panel becomes obsolete or the members

worn out, the panel is made rotating, i.e. it is slowly renewed. Each Friday, the n oldest members

of the panel are removed while n new members are inserted in the panel. It is assumed that the

organization at any point of time must have the possibility to update the information about panel

members who have moved, changed telephone numbers, etc.

It is desired that the management of the panel members and their answers can be implemented as

a web application because the staff of the organization works from different locations.

Application design

The overall composition of the application design is outlined in Figure 5.1.We can distinguish

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_1.jpg

48

between a database and a set of processes working with the database which is typical for many

dynamic web applications.

The application is a mixture of 4 HTML and 6 PHP scripts interacting with a database.

Database

We could apply the database manager developed in the previous session to set up a database for

the present application. Creation of a database as preparation for this application is, however, not

necessary because it will automatically be created the first time the application is run.

Application menu

The first and obvious task is to create an opening page with a menu by which the user can select

the action wanted. A simple HTML page will provide the service needed. The following

index.htm file is the implementation used in our example:

1. <!--- index.htm --->
2. <center>
3. <h2>Opinion polls</h2>
4. <p>The Opinion polls system is initialized with a sample of panel members.

Each Monday a List of panel members to be interviewed is generated. The
data for panel members can be updated if necessary. After the
interviews, the votes are recorded recorded. The table is the basis for
computing statistics for the week. At the end of the week, the first panel
member on the list is deleted, and a new member <font
color="Red">added at the end of the list.</p>

49

5. <table>
6. <tr><td>Initialize table of panel members</td></tr>
7. <tr><td>List panel members for interviews</td></tr>
8. <tr><td>Update data for panel member</td></tr>
9. <tr><td>Record interview votes</td></tr>
10. <tr><td>Compute statistics for the week</td></tr>
11. <tr><td>Delete first and add new panel member</td></tr>
12. </table>
13. </center>

The page has a simple and ordinary structure using a href tags for providing the links to the 5

different services included in the system. A table tag with associate tr and td tags are used to

give the page an orderly appearance.

Creating records and a list of panel members

The polling of opinions requires a sample of persons to interview. If this had been a course in

sample surveys, we would have spent considerable time on the problem how to get a

representative sample of the voting population. In this course, we assume that the statisticians

have completed their job, and that a list of names, etc. exists. A facility for recording these data

in the database is now needed. It is implemented by an HTML and a PHP files.

The first file is named form.htm. It includes in Line 4 a FORM tag with METHOD="post"

and referring to file add.php. The METHOD="post" is important because we use it to create

global variables. The FORM block includes input boxes for Family Name, FirstName,

Telephone, Age, and Area.

1. <!--- form.htm --->
2. <center>
3. <h2>Form to be used for adding new members to the interview panel</h2>
4. <form action="add.php" method="post">
5. <table>
6. <tr><td>Family name:</td><td><input type="text" name="FamilyName"></td></tr>
7. <tr><td>First name:</td><td><input type="text" name="FirstName"></td></tr>
8. <tr><td>Telephone no:</td><td><input type="text" name="Telephone"></td></tr>
9. <tr><td>Age(18-100):</td><td><input type="text" name="Age"></td></tr>
10. <tr><td>Area (1-10):</td><td><input type="text" name="Area"></td></tr>
11. <tr><td></td><td><input type="submit" name="NewMember" value="Submit new panel

member"></td></tr>
12. </table>
13. </form>
14. </center>

Figure 5.2 displays the form for including a new member into the panel.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_2.jpg

50

When this form has been completed and submitted to the server, the add.php file is called. The

first action is defining and specifying the handle $d referring to the database named "db" . You

are of course free to select any convenient name for your database. In Line 4, the variable is used

to open the database and generate the database resource handler $db. Later in this script, the

reference to the open database is always $db. The first time this script is called Line 4 will create

the database

As you recall, we created the database without specifying any tables. The first time this script is

run, the required table for storing the panel ember data must be created. We use the same

approach to test for the existence of MySQL, the database poll and the table Voters as we did in

Session 4. Note that we use VARCHAR() as column type in this example.

1. <?php
2. print("<center>");
3. $link=mysql_connect("localhost","root","password");
4. if (!$link) die("<h3>You must install MySQL. </h3>");
5. $db_selected= mysql_select_db("poll", $link);
6. if (!$db_selected) {
7. mysql_query("CREATE DATABASE poll", $link);
8. mysql_select_db("poll", $link);
9. mysql_query("CREATE TABLE Voters(id INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(id),

FamilyName VARCHAR(30),FirstName VARCHAR(30), Telephone VARCHAR(8), Age VARCHAR(3), Area
VARCHAR(2), Vote VARCHAR(2))", $link) or die("Ikke noen tabell");

10. }
11. mysql_query("INSERT INTO Voters(FamilyName,FirstName, Telephone, Age, Area, Vote)

VALUES('$_POST[FamilyName]','$_POST[FirstName]','$_POST[Telephone]','$_POST[Age]','$_POST[Area
]','-')", $link);

12. print("<center>");
13. print ("<h3>$_POST[FirstName] $_POST[FamilyName] has been added to list of voters.</h3>");
14. print("<p></p>");
15. print("Return to menu.");
16. print("</center>");

51

17. ?>

Each Monday, the votes of each panel member are collected by telephone interviews. As a basis

for the interviews, a list of all current panel members is needed. The list is generated from the

file list.php called from the menu. As you can see, the content of this file is a mixture of HTML

and PHP. The title and the heading of the list is specified by HTML Lines 2 - 5 while the

remaining of the file is a PHP script. This mixture design is quite usual and convenient even

though the same result could have obtained with PHP only using the PHP print function to

specify the list title, table tag and table heading.

1. <!-- list.cfm -->
2. <center>
3. <h2>List of panel members</h2>
4. <table>
5. <TR><Th>ID</Th><Th>Family Name</Th><Th>First

name</th><Th>Telephone</Th><Th>Age</Th><Th>Area</Th></tr>
6. <?php
7. $link=mysql_connect("localhost","root","password");
8. mysql_select_db("poll", $link);
9. $r=mysql_query("SELECT * FROM Voters ORDER BY Id ASC", $link);
10. while ($row = mysql_fetch_array($r)) {
11. print("<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td><td>$row[3]</td><td>$row[4]</td><t

d>$row[5]</td>");
12. }
13. mysql_close($link);
14. print("</TABLE>");
15. print("<p></p>");
16. print("Return to menu. </center>");>

17. ?>

The database name is specified in Line 8. In Line 9, an mysql_query[] is called with a

"SELECT * FROM Voters ORDERED BY Id ASC" string.(ASC is an abbreviation for

ascending). Recall that the variable Id is an automatically generated and assigned to the inserted

members as integers with increasing values. In other words, the first record in the ASC ordering

has the lowest Id value and the last record is the oldest member of the panel.

The while-block in Lines 10 - 12 fetches 1 row represented as an array from the query result

referred to by $r each time the loop is traversed. The array is referred to as $row, and the

individual elements of the row are $row[0], $row[1], $row[2], $row[3], $row[4], and $row[5]

in the print() of Line 11. The last column, Vote, in the table is excluded to avoid that the

interview is influenced by previous votes.

There may be changes in name, telephone number, age, and area since last interview. To permit

changes the list can be updated. The file form3.htm is an HTML update form which calls on the

PHP update.php file for processing the update data submitted. Do not forget that

METHOD="post" is required in the form tag. Figure 5.3 shows the form for updating the

individual data for a panel member.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_3.jpg

52

1. <!--- form3.htm --->
2. <center>
3. <h2>Updating data for panel member</h2>
4. <p>Click the list option to find the Id for the panel member, and complete the form with the updated

data (all fields must be completed) :</p>
5. <table>
6. <form action="update.php" method="post">
7. <tr><td>Member Id:</td><td> <input type="text" name="Id"></td></tr>
8. <tr><td>Family name:</td><td><input type="text" name="FamilyName"></td></tr>
9. <tr><td>First name:</td><td><input type="text" name="FirstName"></td></tr>
10. <tr><td>Telephone no:</td><td><input type="text" name="Telephone"></td></tr>
11. <tr><td>Age(18-100):</td><td><input type="text" name="Age"></td></tr>
12. <tr><td>Area (1-10):</td><td><input type="text" name="Area"></td></tr>
13. <tr><td></td><td><input type="submit" value="Submit updated data"></td></tr>
14. </form>
15. </table>
16. </center>

The script of update.php demonstrates how to update (change) records of the database table. It

assumes that the $Id is found by for example the list option, and uses the variable $_POST[Id]

submitted by the form3.htm in a WHERE clause to locate the row to be updated. All other

variables except Vote can be changed. The focal lines are Lines 5-12 with the SQL string

surrounded by double quotes. You can forget double quotes within double quotes, but do not

forget to enclose all strings to be sent to the database by single quotes.

1. <!-- update.php -->
2. <?php
3. $link=mysql_connect("localhost","root","password");
4. mysql_select_db("poll",$link);
5. mysql_query("UPDATE Voters
6. SET
7. FamilyName='$_POST[FamilyName]',
8. FirstName='$_POST[FirstName]',

53

9. Telephone='$_POST[Telephone]',
10. Age='$_POST[Age]',
11. Area='$_POST[Area]'
12. WHERE Id='$_POST[Id]' ", $link);
13. print("<center>");
14. print("<center>");
15. print("");
16. print ("<h3> Data for voter with ID $_POST[Id] has been updated.</h3>");
17. print("Return to menu.");
18. print("</center>");
19. ?>

Lines 13-18 generates an HTML page to be returned confirming that the voter with ID=

$_POST[Id] has been updated.

Processing, statistics and rotation

After the panel members have been interviewed, their votes must be recorded in the system. A

simple HTML page of the following type can be used:

1. <!-- vote.htm -->
2. <center>
3. <h2>Vote recording</h2>
4. <p>Print out the list of panel members. Use the Id number from the list when recording the vote of the

individual interviewed person. </p>
5. <form action=record.php method=post>
6. <table>
7. <tr><td>Id number of panel menber</td><td><input type="text" name="id" size=4></td></tr>
8. <tr><td>Vote</td><td><input type= text name="vote"></td></tr>
9. <tr><td></td><td><input type=submit value=Record></td></tr>
10. </table>
11. </form>
12. <p>Return to menu.</p>
13. </center>

Figure 5.4 shows the form for rotating the panel.

To preserve privacy as much as possible, only Id number and Vote are recorded. The form tag

specifies the record.php as the script for processing the submitted data.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_4.jpg

54

This script demonstrates an mysql_query() function with an UPDATE string by which the

record is updated with the vote given in Line 6.

1. <!-- record.php --><?php$link=mysql_connect("localhost","root","password");mysql_select_db("poll",
$link);$id="$_POST[id]";mysql_query("UPDATE Voters SET Vote='$_POST[vote]' WHERE id='$id'",
$link); print("<center><h3>The vote of panel member with Id=$id has been
recorded.</h3>");print("<p>Return to vote recording.</p></center>");

2. ?>

The rest of the script should by now be trivial.

One of the options in the menu is to compute the statistics for the week. This option calls the

compute.php script. The statistics computed is quite simple and meant only to be en example. It

starts by defining 5 alternative votes, $A, $B, $C, $D and $E and setting these initially equal

"0" in Line 3 - 7.

1. <!-- compute.php -->
2. <?php
3. $A="0";
4. $B="0";
5. $C="0";
6. $D="0";
7. $E="0";
8. $link=mysql_connect("localhost","root","password");
9. mysql_select_db("poll",$link);
10. $r= mysql_query("SELECT Vote FROM Voters", $link);
11. while($row=mysql_fetch_array($r)) {
12. $s=$row[0];
13. switch($s) {
14. case "A": $A++;
15. break;
16. case "B": $B++;

55

17. break;
18. case "C": $C++;
19. break;
20. case "D": $D++;
21. break;
22. case "E": $E++;
23. }
24. }
25. mysql_close($link);
26. print("<center><h2>Vote frequencies this week</h2>");
27. print("<table>");
28. print("<tr><th>Alternative:</th><th>Frequency:</th></tr>");
29. print("<tr><td>A</td><td>$A</td></tr>");
30. print("<tr><td>B</td><td>$B</td></tr>");
31. print("<tr><td>C</td><td>$C</td></tr>");
32. print("<tr><td>D</td><td>$D</td></tr>");
33. print("<tr><td>E</td><td>$E</td></tr>");
34. print("</table>");
35. print("<p></p>");
36. print("Return to menu. </center>");
37. ?>

In Line 10 all values in column Vote of table Voters are referenced, and the script continue with

a counting loop in Line 11 - 24. For each new row the vote (in $row(0)) is assigned to the

variable $s. The multi-branch switch($s) statement is used in the head of a loop in Line 13 - 23.,

and depending on the case of the current row, the corresponding cumulating variable is

incremented by 1 (obtained by the operator ++). When all rows have been traversed, the

cumulated values of the variables are printed out.

More sophisticated and useful statistics can be produced if we define the database table to take

care of both current and previous week's votes. Such statistics can tell us about the voters’

migration from one party category to another.

At the end of each week the panel must be rotated, i.e. the n first (longest serving) members

should be deleted and replaced by n new members. Without loss of much generality, we have

simplified the rotating to delete the first member and add one new member. The form2.htm

page, shown in Figure 5.5, takes care of the recording of the new members' personal data, and

calls the delete.php script at the server to complete the task.

1. <!--- form2.htm --->
2. <center>
3. <h2>Delete first and add new member to the panel</h2>
4. <h3>New member data:</h3>
5. <table>
6. <form action="rotate.php" method="post">
7. <tr><td>Family name:</td><td><input type="text" name="FamilyName"></td></tr>
8. <tr><td>First name:</td><td><input type="text" name="FirstName"></td></tr>
9. <tr><td>Telephone no:</td><td><input type="text" name="Telephone"></td></tr>
10. <tr><td>Age(18-100):</td><td><input type="text" name="Age"></td></tr>
11. <tr><td>Area (1-10):</td><td><input type="text" name="Area"></td></tr>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session5/images/image5_5.jpg

56

12. <tr><td></td><td><input type="submit" name="NewMember" value="Submit new
member"></td></tr>

13. </form>
14. </table>
15. <p>Return to menu.</p></center>

rotate.php retrieves all records from table Voters and order them by ascending value of the

attribute Id. Since Id is a PRIMARY KEY automatically assigned, a newer record will always

have a higher Id value than an older. The first array obtained by sql_fetch_array() in Line 6 will

therefore be the member with the longest service at the panel and the one to be deleted. Line 7

contains the SQL statement DELETE used for removing records from a populated table. In

Line 8 the new member is inserted in the panel.

1. <!-- rotate.php -->
2. <?php
3. $link=mysql_connect("localhost","root","password");
4. mysql_select_db("poll",$link);
5. $r=mysql_query("SELECT * FROM Voters ORDER BY Id ASC", $link);
6. $row = mysql_fetch_array($r);
7. mysql_query("DELETE FROM Voters WHERE Id='$row[0]'", $link);
8. mysql_query("INSERT INTO Voters(FamilyName,FirstName, Telephone, Age, Area, Vote)

VALUES('$_POST[FamilyName]','$_POST[FirstName]','$_POST[Telephone]','$_POST[Age]','$_POST[Area
]','-')");

9. mysql_close($link);
10. print("<center>");
11. print("<h3>First member has been deleted and new member added.</h3>");
12. print("Return to menu.");
13. print("</center>");
14. ?>

57

Improvements to this application have been suggested at several places in the text. You can for

example try to introduce gender, i.e. separate categories for male and female voters, and/or

expand the database table to take care of 2 weeks' votes for each panel member. In the

computation script, this will permit comparison of special tables for male and female voters. The

computation script can also be extended to generate tables displaying the migration of voters

among parties from last to current week.

58

Session 6: File processing

So far, we have considered databases as the main storage for sets of data. However, it is

frequently needed and efficient to work with serial data stored as files if random access to

elements of the set is not predominant. Typical examples are the logging example of the last

session, and text files where required access to the individual elements of the file usually is

sequential.

In this session, we shall discuss 3 typical file applications, i.e. maintaining files on the server,

fetching remote files from another server to our server, and uploading files from a client

computer to our server. (Downloading/copying files available at the server are no problem with

software usually available at the client computer).

Maintaining files

As a first simple example, consider an application for which you want to keep a log of the visits

to the application. In early web days, a number of sites offered to keep records of the visits to

your site by placing a link to their logging application on your home page. Now, we can take

care of the logging ourselves.

The logging feature can be demonstrated by the following page and script. The log records are

saved sequentially in a .txt file named log.txt. The index.htm is a substitute for the application

you want to keep a log for. A real application would use the users PIN code directly in a code

similar to log_response.php.

1. <!-- index.htm -->

2. <center>

3. <h2>Logging</h2>

4. This page demonstrates how you can log a visitor passing a certain location of your application site. The

example assumes that you give a PIN code (any string will be ok) while in a real application with assigned PIN

codes, the code will usually

be present as a global session variable.

5. <table><form action="log_response.php" method="post">

6. <tr><td>Please type you PIN code:</td><td><input name="pin" type="password"></td></tr>

7. <tr><td></td><td><input name="" type="submit" value="Submit"></td></tr>

8. </form>

9. </table>

10. </center>

59

The log_response.php scripts starts by obtaining the values of 3 variables, the time $now by

means of the built-in function strftime(), $pin from the application, and the name of the script to

which the logging code is attached.

1. <!-- log_response -->

2. <?php

3. $now=strftime('%c');

4. $pin=$_POST['pin'];

5. $location=$_SERVER['SCRIPT_FILENAME'];

6. if(!file_exists('log.txt')) {

7. $e=fopen('log.txt',"a");

8. fwrite($e,"LOG FILE");

9. fwrite($e,"\n");

10. fclose($e);

11. }

12. $f=fopen('log.txt','a');

13. fwrite($f,"$now $pin $location");

14. fwrite($f,"\n");

15. fclose($f);

16. print("<center>");

17. print("<h3> Your visit has been logged </h3>");

18. print("Click here to see the log");

19. print("</center>");

20. ?>

In Lines 6 - 11, the log.txt is created with a heading, if it does not already exists, by the fopen()

and fwrite() and then closed by fclose() to be ready to process the log records. These are each

saved in Lines 12 -15.

The only purpose of the final set of Lines 16 -19 is to provide a return from this script, and they

would not appear in a real logging script. In this example, the content of the log can be displayed

by clicking the link in Line 18.

Fetching files

In some applications, it is required that the server downloads/uploads files from/to other servers

in order to provide the intended services to its clients. As an example, consider a server which is

maintaining a copy of a continuously updated news source based on a regular scanning of source.

The application example uses a continuously running Internet agent to maintain a server file

with a recent copy from a news server. The demonstration of this example requires 3 programs,

an index.htm page for displaying 2 example options, an agent .php script which is downloading

and saving the news page every 1800 second, and a serve.php script to serve the client with the

most recent news copy.

60

The index.htm is by now trivial and its function is only to provide the user with the option of 2

alternative requests:

1. <!-- index.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
3. <html>
4. <head>
5. <title>Untitled Document</title>
6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
7. </head>
8. <body>
9. <center>
10. <h1> Agent menu</h1>
11. <p>In this example you can:</p>
12. <table>
13. <tr><td>1. Start the agent. It will run as long as you keep the window open.

</td></tr>
14. <tr><td>2. Request copy of most recent news if the agent is

running.</td></tr>
15. </table>
16. </center>
17. </body>

18. </html>

The option 1 calls the agent.php to start and run the agent. Line 5, containing a HTML meta

tag, instructs the server to repeat the request every 1800 seconds as long as the message in Line

13 is visible. You can see the selection displayed in Figure 6.1. Note that this agent is running

only when the window is kept open.

Figure 6.1: Agent menu

The content of the news source (edition.cnn.com/index.html in the current example) is obtained

by means of the stream function, file_get_contents(), which can as well be used for obtaining

contents from remote files (as in the example) as well as from local files as in the previous

session. Line 11 fetches the content of the specified remote file and assign it to the variable

$content. The next line includes another stream function, file_put_contents(), which stores the

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_1.jpg

61

content of a variable in a specified file. The syntax for specifying a local stream includes 2

components, file:// is called the scheme, while /PHPRoot/news.htm is called the target. Note

the 3 slashes, ///. In our context, PHPRoot is the name of the top document directory of our web

domain. The scheme http::// indicates that the file operation concerns a remote file in contrast to

a remote file. The scheme file:// syntax indicates a local file operation.

1. <!--- agent.php --->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
3. <html>
4. <head>
5. <meta http-equiv="refresh" content="1800">
6. <title>Agent</title>
7. </head>
8. <body>
9. <center>
10. <?php
11. $content=file_get_contents('http://edition.cnn.com/index.html');
12. file_put_contents("file:///PHPRoot/news.htm", $content);
13. print("The agent is running");
14. ?>
15. </center>
16. </body>
17. </html>

As long as the agent is running, the file news.htm is updated regularly every 1800 second. To be

able to keep the agent running and at the same time continue to investigate this example, you

must therefore open another session for the remaining part of the example. In a real situation, the

start and running of the agent will be the privilege of the web-master and the clients will be

limited to requesting the latest copy of news.htm

Each half hour (1800 seconds), the content of the file news.htm is refreshed. The users can

request a copy by option 2 in index.htm which calls serve.php:

1. <!-- serve.php -->
2. <?php
3. $news= file_get_contents('file:///PHPRoot/news.htm');
4. print("$news");
5. ?>

The variable $news is used for sending a reply to the requesting client by means of the print() in

Line 4. Note that in this script, the same stream function file_get_contents() as in agent.php

(where it was used to fetch a remote file) is here used for a local target with the scheme file//.

62

Uploading files

So far, we have been studying file processing on the server level and downloading files to the

clients. In some applications, it is required that files can be uploaded from the clients to the

server. The security risk connected to this feature should not be underestimated.

As an example, consider this online course. The reports to assignments given in the course

should be uploaded to a specified directory on the server. The course instructor and the students

should at any time be able to see the list of uploaded reports, and if wanted, read any of the

uploaded files.

1. <!-- index.htm --
2. <center>
3. <h1>Uploading and retrieving files</h1>
4. < p>Do you want to:</p>
5. <table>
6. <tr><td>See the list of submitted files</td></tr>
7. <tr><td>Upload a file from your own computer</table>
8. </center>

index.htm presents 2 options, see the list of uploaded files or upload a report file, as displayed in

Figure 6.2.

Figure 6.2: Uploading and retrieving files

The first option of the index.htm file is to get a listing of the uploaded files from the directory

(./file relative to the script) in which the saved files are stored:.

1. <!-- list.php -->
2. <?php
3. print("<center>");
4. print("<h2>List of uploaded files :</h2>");
5. $dir="./file";
6. if ($handle= opendir($dir)){
7. print("Files:
");
8. print("<table>");
9. while (($file = readdir($handle)) !=false) {
10. if ($file !=".." && $file !=".") {
11. print("<tr><td> $file </td></tr>");
12. }

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_2.jpg

63

13. }
14. print("</table>");
15. closedir($handle);
16. }
17. else print("No files uploaded.");
18. print("</center>");
19. ?>

If the directory exists, it is opened with a returned handle, $handle, and a list of the files stored

in the directory is displayed with an HTML a tag for each file which permits the content of the

individual files displayed. An example of the resulting list is shown in Figure 6.3.

Figure 6.3: List of images

The second option results in a second HTML page, upload.htm. A few special aspects of this

form page should be noted. First, the form tag must as usual have POST specified as method.

Second, the tag must include the attribute enctype="multipart/form-data", and, third, an input

tag with attribute type="file" must be present.

1. <!-- upload.htm -->
2. <center>
3. <h2>Uploading</h2>
4. <form action="upload2.php" method="POST" enctype="multipart/form-data">
5. <table>
6. <tr><td>Name to be assigned to file at server:</td> <td><input name="name" type="text"></td></tr>
7. <input name="MAX_FILE_SIZE" type="hidden" value="30000">
8. <tr><td>Identify the file at your computer to be uploaded:</td>
9. <td><input type="file" name="upload" > </td></tr>
10. <tr><td></td><td><input type="submit" Value="Upload file"></td></tr>
11. </table>
12. </form>
13. </center>

The form is displayed in Figure 6.4

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_3.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_4.jpg

64

Figure 6.4: Uploading

The form page upload.htm calls the PHP script upload2.php which confirms the uploading of

the file by means of the statements in Line 3-8, and stores the file by means of Line 9 -10. The

move_uploaded_file() is another stream function.

1. <!-- upload2.php -->
2. <?php
3. $destination_file="./file/$_POST[name]";
4. move_uploaded_file($_FILES['upload']['tmp_name'], $destination_file);
5. print("A file with the following attributes has been uploaded:
");
6. print(" Remote name:".$_FILES['upload']['name']."
");
7. print(" File type:".$_FILES['upload']['type']."
");
8. print(" Size in bytes:".$_FILES['upload']['size']."
");
9. print(" Temporary name:".$_FILES['upload']['tmp_name']."
");
10. print(" Error code:".$_FILES['upload']['error']."
");

11. ?>

Note that the concatenation operator '.' is used in the print() functions in Lines 6-9 to join the

texts surrounded by double quotes with PHP array variables. You can see a confirming message

in Figure 6.5.

Figure 6.5: Confirmative message

http://nordbotten.net/phproot/courses/php_hsh/sessions/session6/images/image6_5.jpg

65

Session 7: Functions in PHP

Functions

One of the most frequently ways for re-using code is creating a function. A function can be

considered as a complex operator, and is either a built- in function or a user-defined function. A

function is recognized in the script by a name followed by a pair of parentheses which embraces

none, one or several arguments. While the names of variables are case-sensitive in PHP, the

function names are not case-sensitive.

We have already met a number of built-in functions such as print(), mysql_query(), etc. The

internal, built-in functions come with the language processor and are available for calls when

needed.

The user-defined functions must, as the name indicates, be defined by the developer and be made

available before they can be called from a script. The syntax for defining a function is:

1. function my_function ($a, $b, $c) {
2. function code
3. return $d
4. }

The specified arguments $a, $b and $c (your definition determines the number and names of the

arguments) are called the formal arguments and are the names you use in the function definition.

If the function returns any values, they are represented by $d which can be a single variable or an

array. A defined function can be called from a script if it is accessible for the script. It can be

made available either by copying the complete function definition into the script, or by inserting

an include ("my_functions.php") in the beginning of the calling script file. The advantages of

the latter option are saved space, and that the file my_functions.php can contain several user-

defined functions needed to be called from several scripts.

A call from a script to a user-defined function has the syntax $D=myfunction($A, $B, $C). The

argument names $A, $B, and $C, called the actual arguments, are the variable names used in the

calling script for the variable values you want to pass to the function. It is important to note that

these values are given to the formal variables $a, $b and $c within the function while the

variables $A, $B and $C outside the function maintain their values independent of the

computations within the function. The function value $D is the output return from the function

available to the calling script from the return variable $d in the definition. In some cases, a

function may have no output and this variable and the assignment operator are not needed. The

function can also return several values in which case $D is an array. By means of the return

value(s) can the external values $A, $B and $C be changed if required.

66

Note that the symbols used here for formal and actual variables are examples. You are free to use

the names of your own choice in your functions and applications.

Authorization and authentication

By authorization we mean the assignment of access identities to a web site visitor.

Authentication is the checking of the validity of identities provided by a visitor to obtain access

to the site. When designing a web application, authorization and authentication is frequently

required functionalities for varying reasons. The site owner may for example want to know who

are visiting the site, to be able to provide personalized service to customers, to keep track of the

performance of student visitors, etc.

These functionalities are used with minor variation in different applications. As an example of

more user-defined functions, we will design a login module which can perform authorization and

authentication in web applications. Figure 7.1 indicates the overall structure of the login

functionality. There are alternative designs which could have been used. If for example it is

important to preserve the anonymity of the users, we could have asked the user to select a PIN

code herself and let the server hash the selected code and check that it is free. The PIN external

code would then be unavailable for the host while the anonymous internal code could be used for

analysis of the site visits. However, a hash code approach would not have satisfied applications

in which it is required that the host can recognize the users' external identities, e.g. in e-shop

billing and e-courses with grading.

We start the example application by developing 2 ordinary HTML pages. The first, index.htm,

generates the login form returned to the visitor when calling the application.

1. <!--- index.htm --->
2. <center>
3. <h1> Login</h1>
4. </center>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_1.jpg

67

5. Thank you for your interest in this site. To get access to the application, you have to be authorized.<i>If
you already are registered</i>, please go directly to the login.

6. <i>If you are new and want access to the application</i>, we need some information from you, and you
will need a personal identity number (PIN). Please continue with the registration.

7. <p></p>
8. <center>
9. <table>
10. <tr><td>Login with your</td></tr>
11. <FORM ACTION="functioncalls.php" method="post">
12. <tr><td>Your username:</td> <td><input name="username" type="text" size="20"></td> </tr>
13. <tr><td>Your PIN code:</td><td> <INPUT TYPE="password" name ="submitted_pin"

SIZE="20"></td></tr>
14. <input name="login" type="hidden" value="1">
15. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response"

VALUE="Submit"></td></tr>
16. </FORM>
17. </table>
18. </center>

This form provides the server with the variables username and PIN used for authentication. The

only new aspect in this page is the use of the attribute HIDDEN in the INPUT tag in Line 14.

The hidden variable named login with value="1" is invisible for the client. By means of this

variable, the server will be able to distinguish the variables sent by this page from those sent

from the next form. See Figure 7.2. The form calls the script functioncalls.php which represent

an application for which we require controlled login.

Figure 7.2: Login

The form also includes a link to registration.htm for visitors who are not yet registered. The

form in this second HTML page collects the information required for authorization, in this

example first and last name and a username chosen by the visitor. Other personal information

such as gender, age and home region, can of course be included if required.

1. <!-- registration.htm -->
2. <html>
3. <head>
4. <title>applications</title>
5. </head>
6. <center>
7. <h1>Registration</h1>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_2.jpg

68

8. <p>In order to recognize and serve the different requirements of our visitors, each visitor needs her/his
own username and PIN code.
 Please, complete and submit the form, and your username and PIN
code will be returned to you.</p>

9. <FORM ACTION="functioncalls.php" method="post">
10. <table>
11. <tr><td>Your first name:</td> <td><input name="firstname" type="text" SIZE="20"></td> </tr>
12. <tr><td>Your last name:</td> <td><input name="lastname" type="text" SIZE="20"></td> </tr>
13. <tr><td>Your user name:</td><td> <INPUT TYPE="text" name ="username" SIZE="20"></td></tr>
14. <input name="registration" type="hidden" value="1">
15. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response"

VALUE="Submit"></td></tr>
16. </table>
17. </FORM>
18. </center>
19. </body>
20. </html>

Note that also this page has a hidden input variable, named registration with value="1", for the

same reason as the first form. This form is shown in Figure 7.3.This form specify the same PHP

script, functioncalls.php, for server processing as did the first form.

Figure 7.3: Registration

The PHP script functioncalls.php can be considered as the application script of the example. It

contains several new features. Line 3 includes another file, in this case functions.php. The file

functions.php contains 4 functions we shall discuss in detail below.

The Lines 2-11 check the existence of MySQL, the database db and the table Users. Line 12

has an include call to a file called my_functions.php in which the definition of our functions

reside. We shall return to the structure of this file below after we have discussed the definitions

of the functions.

1. <!-- functioncalls.php -->
2. <?php
3. //Open connection/database/table
4. $link=mysql_connect("localhost",'root','password');
5.);
6. $db="db";

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_3.jpg

69

7. $db_selected=mysql_select_db($db, $link);
8. if(!$db_selected) {
9. mysql_query("CREATE DATABASE $db", $link);
10. mysql_select_db($db, $link);
11. mysql_query("CREATE TABLE Users (firstname VARCHAR(20), lastname VARCHAR(20), email

VARCHAR(20), PIN VARCHAR(10))", $link);
12. }
13. include "my_functions.php";
14. //Function calls
15. if (isset($_POST['login'])){
16. $approved=authentication($db, $_POST['username'], $_POST['submitted_pin']);
17. if ($approved[0]=="yes")
18. print("<h2><center>$approved[1], you are logged in</center></h2>");
19. else
20. print("<p><center>Your PIN code was invalid</center></p>");
21. }
22. if(isset($_POST['registration'])) {
23. $reg=authorization($db,$_POST['firstname'],$_POST['lastname'], $_POST['username']);
24. print("<center>You have been successfully authorized to access the site

25. Your username is: $reg[0], and your PIN is: $reg[1].<p></p>");
26. print("Return to Login.</center> ");
27. }
28. mysql_close($link);
29. ?>

In Line 15 the existence of the hidden variable login is tested by means of the built-in function

isset(). If it has been assigned a value, the server will know that it is a login form it has received,

and a function call to the function authentication() is made in the following line. The

authentication function requires 3 arguments, the database handle $db, as well as the $username

and the $PIN submitted by the user on the login form. A return value for the variable approved

is expected from the function. If the returned value is "yes", a message is sent back to the client

in Line 18 confirming that the user is logged in. If not, the login failed, and a message about the

failure is sent by the next couple of lines.

If a value for the hidden variable registration is received from the client instead of login, the

function authorization() is called in Line 23.. This function is expected to return the values of

username and PIN. The function output must therefore include 2 variables, in this case the

username and the PIN in an array with 2 elements defined within the function. See Figure 7.4

for illustration of a successful registration

Figure 7.4: Successful registration

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_4.jpg

70

Authorization

We proceed to the definition of the functions, and start with de definition of authorization().

This function should be able to generate a new, unused PIN, append the row with the persons

first name, last name, user name and generated PIN in the created table of the database.

The task of generating a new PIN code is left to another function, pin_assignment() which only

require the database handle, $db, as argument. This function, which is the next to be discussed,

delivers a new and unused $PIN. Note that one function can call on another function.

The data for the new visitor is inserted into the database table Users by a mysql_query()

function. We want the function to return 2 variable values, $username and $PIN, in an array

which is obtained by the return statement in Line 5.

1. //Authorization.php
2. function authorization($db,$firstname, $lastname, $email){
3. $PIN=pin_assignment($db);
4. mysql_query("INSERT INTO Users(firstname, lastname, email, PIN)

VALUES('$firstname','$lastname','$email', '$PIN')");
5. return array($email,$PIN);
6. }

PIN code assignment

We saw in the previous function definition that one function can call another. As a matter of fact,

a function can also call itself which results in a recursion. In the pin_assignment() function, the

first step is to retrieve all records(arrays) from database table Users in Line 3, and set initially

the test variable $used="yes" before entering the random number generation and testing while

loop in Line 5.

In Line 6 a random seed is planted followed by generation of a random integer, $PIN2, in the

range 1000 to 99999 (these limits can be set according to the particular needs). The random seed

is planted to avoid that the same sequence of number is generated each time the application is

run.

The variable $used is now re-set to "no". A test to see if the generated number has been used

before, runs from Line 9 to 13. Here $ result is the array corresponding to the current row $r of

the database table and $result['PIN'] is the value of the PIN column of that row. If this

$result['PIN'] is identical (= =) to the generated $PIN2, the generated integer is used, and

variable $used is assigned the value "yes". There is no reason to continue the test, the loop is

therefore broken by the instruction break statement in Line 12, and the processing is directed

back to Line 5.

1. //Pin assignment
2. function pin_assignment($db) {
3. $r= mysql_query("Select * FROM Users");

71

4. $used="yes";
5. while ($used=="yes"){
6. srand();
7. $PIN2=rand(1000,99999);
8. $used="no";
9. while($result=mysql_fetch_array($r)) {
10. if ($result['PIN']==$PIN2) {
11. $used="yes";
12. break;
13. }
14. }
15. }
16. return $PIN2;
17. }

Each time the control is returned to Line 5, a new integer is generated and the test repeated, until

an integer not used in the table Users is found, i.e. the test loop is exited with $used="no". Then

the unused integer $PIN2 is returned to the calling script.

Authentication

The third function we need is the authentication(). The call passes $db, submitted $username

and $PIN code to this function. The task for this function is to check if the passed values are

valid according to the User table. To avoid problems with disturbing white space, etc. in

connection with the string values, the mysql_escape_string() function is used in Line 3 and 4. 2

arrays are declared in the next lines. $result will be used for storing the content of a retrieved

row (usually 0 or 1 matching row) from table Users, while the array $approved will be used to

return 2 values to the calling script.

1. //Authentication
2. function authentication($db, $username, $PIN) {
3. $username2=sqlite_escape_string($username);
4. $PIN2=mysql_escape_string($PIN);
5. $result=array();
6. $approved=array();
7. $r= mysql_query("Select * FROM Users WHERE PIN='$PIN2'");
8. while ($result=mysql_fetch_array($r)) {
9. if ($result['email'].$result['PIN']==$username2.$PIN2) {
10. $approved[0]="yes";
11. $approved[1]=$result['firstname'];
12. }
13. else $approved[0]="no";
14. return $approved;
15. }
16. }

After possible retrieval of a row where the PIN column has the value $PIN2, the content is

inserted into the array $result in Line 8. In the next row, we use the concatenation operator (".")

72

and 2 concatenated strings, $result['username'].$result['PIN'] from the table Users and

$username2.$PIN2) from the client, are compared in Line 9. By concatenating username and

PIN code, we have the extra security that the combination of username and PIN code are

validated.

If the submitted data are validated, the first element $approved[0] of the array $approved is

assigned the value "yes", and the second element $approved[1] is assigned the value

$result['firstname'] from the matching row of the database. If not validated, the first element is

set to "no". The last action is to return the array $approved to the application script.

Function library

The 4 functions created for this application can either be copied into the PHP files in which they

are called, or, as we have done in this example, simply collect all functions in a library file called

my_functions.php. The structure of this file is:

1. //my_functions.php
2. <?php
3. //Name: My_functions.php
4. //Function:mysql_table_exists is copied here
5. //Function: authorization is copied here
6. //Function: pin_assignment is copied here
7. //Function: authentication is copied here
8. ?>

The library file is stored in the same directory as the other files of the example. The functions

are made available to the application with the include() statement as demonstrated in the script

functioncalls.php.

More function can be added into the file which in fact becomes a library file and can be used in

different applications which need one or more of the functions. The advantages are that all

functions are kept in one location making maintenance more effective.

Logging

To demonstrate the last statement, and to introduce a few more aspect, we introduce a second

example, the logging function. By logging we mean recording when authorized users are

passing specified observation points in our application system. Logging is particularly important

for the application usage analysis when studying how a system is actually used and for preparing

improvements based on this experience.

73

Logging function

Below is a function definition, logging.php, which requires a single argument, a PIN

identification. The value of the current user's PIN is frequently available as $_SESSION['PIN'],

and can be used as argument in calling this function.

1. //Logging.php
2. function logging($PIN) {
3. if(!file_exists('log.htm')) {
4. $f=fopen('log.htm','wb');
5. fwrite($f, "LOG FILE
");
6. fclose($f);
7. }
8. $time=strftime('%c');
9. $record="$time, $PIN, $_SERVER[SCRIPT_FILENAME]
";
10. $stream='log.htm';
11. $f=fopen($stream,'aw');
12. fwrite($f, $record);
13. fclose($f);

14. }

The function specification, logging.php, is stored as the fifth function in the my_functions.php

file.

Example environment

To be able to demonstrate the use of this function, we shall need a few more surrounding files: a

menu index.htm, start.php, view.php.

The index.htm looks like this:

1. <!-- index.htm -->
2. <html>
3. <head>
4. <title>Index.htm</title>
5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6. </head>
7. <body>
8. <center>
9. <h2>Logging menu</h2>
10. Do you want to:
11. <table>
12. <tr><td>Make a log entrance:</td><td>Yes</td></tr>
13. <tr><td>See the log:</td> <td>Yes </td></tr>
14. </table>
15. </center>
16. </body>

74

17. </html>

The only justification of this page is to demonstrate either initiating a log record or seeing the log

file. Figure 7.5 demonstrates the displayed page.

Figure 7.5: Login menu

The purpose of the start.php script is to simulate the entering into an application. The first

statement, Line 2, of this script include our function library my_functions.php which makes the

function logging() available. In a real application a user will have logged in with a PIN code. In

our example, we assume that the in PIN code is "1234". When our activation of the start.php

has been logged, we will get a message in return. In a real application there are usually no need

for returning messages each time a logging has been carried out.

1. <?php
2. include('my_functions.php');
3. $PIN='12345';
4. logging($PIN);
5. print("<center>Your visit to this test page Index.php has been

logged<center>");

6. ?>

To complete out exemplification of the logging function, we also need a short script we can call

(the second option of the index.htm) to view the log file. view.htm serves this purpose. In this

script, we make use of $stream and the powerful file_get_contents() function. This function

opens, reads the content of and closes the specified file. The contents of the file is read into a

string variable (in the example called $contents).

1. <?php
2. //view.php
3. $stream='log.htm';
4. $contents=file_get_contents($stream);
5. print("$contents");

6. ?>

An example of a recently started log can be seen in Figure 7.6.Try to identify scripts in your own

application work which you think can be used in other applications and start building you private

library of user-defined functions. Note that the file log.htm with the recorded events is located in

the same directory as the logging.php. In real applications the record file should be kept in some

other directory.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_5.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_6.jpg

75

Figure 7.6: Log start

Parsing

Frequently, an application requires that each word of a text is identified and recorded. The

process of traversing a text, locating and recording each word is called parsing. Parsing is a basic

requirement for building search engines and text retrieval systems.

We shall see how a parsing function can be designed and developed. We start with a simple form

page, parser.htm, by which the name of the file to be parsed is specified. We assume that the

text to be parsed is located at the client computer while the 'application' and the parser function

reside at the server, and prepare a simple .htm form page:

1. <!--- index.htm --->
2. <center>
3. <h2>Text file indexing</h2>
4. <p>Select a .txt file from your pc:</p>
5. <form action="application.php" method="POST" enctype="multipart/form-data">
6. <input type="hidden" name="MAX_FILE_SIZE" value="50000">
7. <table>
8. <tr><td>Name of your local file:</td><td><input type="file" name="client_file"></td></tr>
9. <tr><td></td><td><input type="submit" value="Submit"></td></tr>
10. </table>
11. </form>
12. </center>

We note that the form tag in Line 5 includes the enctype attribute with value multipart/form-data,

the hidden input with attribute MAX_FILE_SIZE and the input tag of type file which all are necessary for file

uploading. When submitted to the server, the script application.php is activated. See Figure 7.7.

Figure 7.7: Text file indexing

The purpose of the application.php is to represent any application which requires a specified

text file to be parsed. The parsing is carried out by a function called parser.php which we have

saved in our library of functions, my_functions.php. We return to the content of this function

below. Here we start by noting that our library of functions is included in Line 3.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session7/images/image7_7.jpg

76

1. <!-- application.php -->
2. <?php
3. include('my_functions.php');
4. $destination_file='./file/server_file';
5. move_uploaded_file($_FILES['client_file']['tmp_name'], $destination_file);
6. $c=file_get_contents($destination_file);
7. print("<h2>Text:</h2>$c");
8. $document_size=strlen($c);
9. print("<p>Document size: $document_size characters</p>");
10. $frequency_list=array();
11. $rx="/[a-zA-Z]/";
12. $frequency_list=parser($c,$rx);
13. arsort($frequency_list);
14. $rows=0;
15. $sum=0;
16. print("<center><h2>Word frequencies.</h2>");
17. print("<table>");
18. foreach($frequency_list as $key => $value) {
19. print("<tr><td>$key</td><td>$value</td></tr>");
20. $sum=$sum+$value;
21. }
22. print("</table>
");
23. $rows=count($frequency_list);
24. print("Number of rows: $rows
");
25. print("Sum of words: $sum</center>");

26. ?>

In Lines 5-6, the test file uploaded is stored and retrieved as a string, $c. Line 8 demonstrates

how we can obtain the size in characters of the uploaded file by means of the built-in function

strlen(). Lines 10-11 are preparations for the call to the our user-built function, parser($rx, $c),

the declaration of the array $frequency_list is to prepare for the output of the function, and the

definition of $rx specified the conditions for locating the words in the text. The concept word

can be defined in several ways. In this example, a word is a consecutivechain of characters in the

ranges a-z and A-Z. The content of the variable $rx, "/a-zA-Z /", is called a regular expression

written in the Perl Compatible Regular Expression syntax.

The core line in this application is Line 12 which calls the parser() function. The function has 2

arguments, $c containing the document string, and $rx determining how the string shall be

parsed. The value of the function, $frequency_list is an array containing the different words

appearing in the document as indices and the frequency of appearance as values. Since there is

no reason for distinguishing between actual and formal arguments, we use the same notation for

both.

The remaining part of the script specifies how the results should be visualized. Line 13 says that

the frequency list should be presented in descending order, the variables $sum keeps track of the

number of words in the text and the variable $rows tells us the number of different words

identified.

77

The function parser($file) looks like this;

1. <!-- parser.php -->
2. <?php
3. function parser($c,$rx) {
4. $c=strtolower($c);
5. $document_size=strlen($c);
6. $frequency_list=array();
7. $characters_processed=0;
8. $word="";
9. while($characters_processed < $document_size) {
10. $char=substr($c, $characters_processed,1);
11. if (preg_match($rx, $char)) {
12. $word=$word.$char;
13. $characters_processed++;
14. }
15. else {
16. $word=trim($word);
17. if (!preg_match($rx, $word)) {
18. }
19. else {
20. if(!array_key_exists($word, $frequency_list)) {
21. $frequency_list[$word]=1;
22. }
23. else {
24. $frequency_list[$word]++;
25. }
26. }
27. $word="";
28. $characters_processed++;
29. }
30. }
31. return $frequency_list;
32. }

33. ?>

Note that within the function the function arguments can be recognized as variables. The first

task is to standardize all words to lower case. The built-in function in Line 4 takes care of this. .

The built-in function, strlen(), in Line 5 can therefore recognize the text in $c and derive the

number of characters in the text. In a loop, which span from Line 9 to Line 30, each character of

the string, 1 at a time, is extracted by the function substr($c, $characters_processed, 1) in Line

10 .

Line 11 contains an if() with a function preg_mach($rx, $char) which is true if the character

value of $char belongs to the expression $rx. In this case, the character will be added to $word

in Line 12. If the function yields false, it means that the word has come to an end, and it should

be recorded. However, it is necessary to test that the 'word' is not a non-alphabetic character

which is done by means of the second regular expression in Line 17. If the $word contains a real

word, Line 20 test if it is a new word, and if so, adds a new row with value 1 to the

78

$frequency_list, else it increments the value of the row in which $word is recorded by the ++

operator and Line 27makes the variable $word ready for starting a new word.

When the text is processed, the compiled frequency list is returned to the calling

application.php as an array and displayed for the client.

This function is added to the file my_functions.php.

79

Session 8: Information retrieval

General model

As an introduction to use of MySQL in Session 4, we studied an application to keep track of our

private library. It had 2 deficiencies:

o the application required that a classification for each book was provided for

recording, and

o the book itself was not electronically available for reading.

Search engines are becoming tools for obtaining information as well on the internet as on local

nets. In this session we shall investigate some of the basic problems and solutions connected with

systems developed for searching and retrieval of data. There exist a great variety of systems and

we have to limit ourselves to a simple system which stores text files and permits users to search

for a wanted file(s) based on the content of the file. In Figure 8.1, the general layout for our

Figure 8.1: Retrieval system

model is shown. As common for all applications discussed in this course, we assume that the

system is hosted by a remote server, and that all communication with the system on the net. In

principle, there are 3 interfaces to the system:

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_1.jpg

80

1. Feeding the system with text files to be indexed and stored,
2. Searching for references to and retrieval of text files,
3. Administrating the system

Each interface is served by a separate module which we shall discuss in the following sections.

Index module

In the most primitive version, we need a possibility to submit text files to the system, and our

first step will be to create an .htm form page for uploading a named text file. We have already

studied several uploading examples.

1. <!-- index.htm -->
2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
3. "http://www.w3.org/TR/html4/loose.dtd">
4. <html>
5. <head>
6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
7. <title>Untitled Document</title>
8. </head>
9. <body>
10. <center>
11. <h2>Uploading a text file</h2>
12. <p>This form is for uploading text files to the search and retrieval system. You need to specify 2 names

associated with the file, the local name of the file at your computer, and the name to be carried by the
file in the system. The latter should ber as descriptive as possible.</p>

13. <form action="descriptor.php" method="post" enctype="multipart/form-data">
14. <input type="hidden" name="MAX_FILE_SIZE" value="50000">
15. <table>
16. <tr><td>Local file name:</td><td><input name="local_file" type="file"></td></tr>
17. <tr><td>Name in the system:</td><td><input name="system_file" type="text"></td></tr>
18. <tr><td></td><td><input type="submit" value="Submit"></td></tr>
19. </table>
20. </form>
21. </center>
22. </body>

23. </html>

The form permits to specify a document file (.txt, .php. .doc, etc.) on the client computer and

request it uploaded to the server naming it with another name if wanted. The file server name

should be a name describing the file and have the extension .htm if the files normally will be

read from the screen. We are now well acquainted with uploading of files, and there are no

special tricks hidden in this page. Note that the page is calling descriptor.php and that you must

remember to include the important hidden input in Line 14. The displayed form is shown in

Figure 8.2.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_2.jpg

81

Figure 8.2: Uploading a text file

The form calls the descriptor. php script for processing of the uploaded file. The purpose of this

script is twofold:

1. Analyze the content of the file, derive descriptors and save the result in an appropriate way.
2. Store the complete file file for future retrieval

descriptor.php starts by including the library file my_functions.php because we shall make use

of the function parser.php developed in the last session. Lines 4-11 connects to MySQL, select

the database ir if it exists or creates the database ir and table descriptors if they do not exist.

Note the use of the function die() with argument mysql_error() demonstrated in Line 10. If, for

some reason, the table descriptors cannot be created, this function can be informative during the

creation and debugging of the script.

1. <!-- descriptor.php -->

2. <?php

3. include('../../../my_functions.php');

4. $link=mysql_connect("localhost",'root','password');

5. if (!$link) die("<center><h3>Install MySQL. </h3></center>");

6. $db_selected= mysql_select_db("ir", $link);

7. if (!$db_selected) {

8. mysql_query("CREATE DATABASE ir",$link) or die("<center><h3>Cannot create

database ir. </h3></center>");

9. mysql_select_db("ir", $link);

10. mysql_query("CREATE TABLE descriptors(id INT NOT NULL AUTO_INCREMENT, PRIMARY

KEY(id), word VARCHAR(20), document_words VARCHAR(6), descriptor_frequency VARCHAR(6),

document_ref VARCHAR(40))", $link)

or die("<center><h3>Cannot create table Descriptors.</h3></center>

".mysql_error($link));

11. }

12. $document_ref="../documents/$_POST[system_file]";

13. move_uploaded_file($_FILES['local_file']['tmp_name'], $document_ref);

14. $c=file_get_contents($document_ref);

15. print("<h2>Indexing summary:</h2>");

16. $size=strlen($c);

17. print("Document size: $size characters
");

18. $frequency_list=array();

82

19. $rx="/[a-zA-Z]/";

20. $frequency_list=parser($c,$rx);

21. arsort($frequency_list);

22. $rows=0;

23. $document_words=0;

24. foreach($frequency_list as $key => $value) {

25. $document_words=$document_words+$value;

26. }

27. $rows=count($frequency_list);

28. print("Number of words: $document_words
");

29 print("Number of unique words: $rows
");

30. $stop_list=array();

31. $stop_list=unserialize(file_get_contents('../AdminModule/stop_list.txt'));

32. $descriptor_list=array();

33. $number=1;

34. foreach($frequency_list as $key => $value) {

35. if (strlen($key) >2) {

36. $stop_marker=0;

37. foreach($stop_list as $key_stop => $value_stop) {

38. if ($key == $value_stop) {

39. $stop_marker=1;

40. }

41. }

42. $percent=100*$value/$document_words;

43. if (($stop_marker == 0) && ($percent >= 0.1)) {

44. $descriptor_list[$key]=$percent;

45. $number++;

46. }

47. }

48. }

49. print("<h3>List of selected descriptors </h3>");

50. print("<table>");

51. print("<tr><th>Descriptor</th><th> Pct. of words</th></tr>");

52. foreach($descriptor_list as $key => $value) {

53. print("<tr><td>$key</td><td>$value</td></tr>");

54. }

55. print("</table>");

56. foreach($descriptor_list as $key => $value) {

57. $descriptor_frequency= $value*$document_words/100;

58. mysql_query("INSERT INTO descriptors(word, document_words, descriptor_frequency, document_ref)

VALUES('$key', '$document_words', '$descriptor_frequency', '$document_ref')",$link) or die("Nothing

INSERTED.
".mysql_error($link));

59. }

60. ?>

83

Lines 11-13 upload the specified file from the client to the server and save it in the directory

documents, and create a string copy, $c, for further analysis. In Line 20, the function parser.php

is used for decomposing the text string $c into an array, $frequency_list, applying the regular

expression /[a-zA-Z]/.

The frequency_list contains all unique words appearing in the document with this frequency.

You can see an example in Figure 8.3. A number of the most frequent words, such as pronouns,

Figure 8.3: Indexing summary

prepositions, conjunctions, etc., are not useful descriptors for a document. For that reason it is

efficient to create a so-called stop word list containing words we want to remove from the

frequency list. Line 31 assumes that such a list, stop_list.txt, has been created and stored in the

AdminModule directory. This file is a serialized form of an array of all stop words. The file has

been serialized by the built-in function serialize() to a form which is convenient for storing in a

file. The file must therefore be retrieved and converted back to an array, stop_list, by a function

unserialize(). In Lines 32-41, an array of descriptors is created from the frequency_list by

removing all words with 1 or 2 characters, and using the stop_word array.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_3.jpg

84

At the other end of the word frequency distribution, we have the words with a rare occurrence. If

a word counts for, say, less than 0.1 % of all words of a paper, the probability is usually low that

the word is significant for the content of the document. A second removal is therefore carried out

in Lines 42-46 in which only words occurring with relative frequency >= 0.1 % are kept in the

descriptor_list array. Finally, in the block of Lines 49-59, the selected descriptors are displayed

and inserted in the database for use in future searches. Each descriptor within each document is

recorded in a separate row with data on the document's total number of words, the descriptor's

frequency and a link to the document.

Search module

Our purpose with the system is to identify those documents in the collection containing a content

in which we are interested. We specify our interest in a request created by a set of keywords

which we hope will match the descriptors of wanted documents. In the form HTML page

search.htm the user can specify her/his keyword(s). Separate multiple keywords with the symbol

','.

1. <!-- search.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

3. <html>

4. <head>

5. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

6. <title></title>

7. </head>

8. <center>

9. <h2>Search for documents</h2></center>

10, <p>This form let you search for documents in your collection based on document descriptors - frequently

appearing appearing terms in the documents. The words have been extracted from the documents by full-text

parsing and selected according to the frequencies of appearance. Non-informative words such as pronouns,

conjunctions prepositions as well as very general words for describing time such as day, night, month, etc. are

not suitable descriptors.</p>

11. <p>In requests for professional documents, you should therefore use words from the professional

vocabulary such as file, database, system, program, web, etc. You can use a single search word, for examples

'internet', or you can form a search string like word, word, word3. </p>

12. <center>

13. <form action="search.php" method="post">

14. <table>

15. <tr><td>Search string:</td><td><input name="search_string" type="text " size="50"></td></tr>

<tr><td></td><td><input type="submit" value="Submit"></td></tr>

16. </table>

17. </form>

18. </center>

85

19. <body>

20. </body>

21. </html>

The form page (Figure 8.4)calls the script search.php for retrieving links to documents with

Figure 8.4: Search for documents

matching descriptors. Note that the existence of tables in an existing database can be tested by an

SQL statement as shown in Line 7. After connecting to and opening the database ir, the script

converts the search string read from the form to an array, search array, by means of a new PHP

function in Line 10. The statement $a=explode($b,$c) divides the string $c into sub strings

based on the separator $b and stores the sub strings in array $a. In Lines 13-23, the array is read

and a search condition string of the form (('word1') OR ('$word2') OR ('$word3')) is formed.

This procedure is required for use in the following SQL SELECT statement for retrieving

matching records in the database.

1. <?php

2. $link=mysql_connect("localhost",'root','password');

3. if (!$link)

4. die("<center><h3>Install MySQL. </h3></center>");

5. $db_selected= mysql_select_db("ir", $link); 6. if (!$db_selected) {die("<center><h3><font

color=red>Database ir does not exist.</h3></center>");}

7. if (!$t=mysql_query("SHOW TABLES FROM ir", $link)) {die("<center><h3>Table does

not exist.

8. </h3></center>");}

9. $search_array=array();

10. $search_array=explode(",",$_POST['search_string']);

11. $search_condition="";

12. $keyword="";

13. foreach($search_array as $keyword) {

14. if($search_condition == "") {

15. $keyword=trim($keyword);

16. $search_condition="((word ='$keyword')";

17. }

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_4.jpg

86

18. else {

19. $keyword=trim($keyword);

20. $search_condition=$search_condition." OR (word ='".$keyword."')";

21. }

22 }

23 $search_condition=$search_condition.")";

24. print("<p><center>Your query condition: $search_condition</p>");

25. $r=mysql_query("Select * FROM descriptors WHERE $search_condition", $link);

27. $row = mysql_fetch_array($r);

28. if (!isset($row[0])) {

29. die("<h3>No match with search condition in database.</h3>");

}

30. print("<table BORDER>");

31. print("<caption><h3>Documents retrieved</h3></caption>");

32. print("<tr><th>Document link</th><th>Document score</th></tr>");

33. $previous=array();

34. $first_row=1;

35. while ($row = mysql_fetch_array($r)) {

36. if ($first_row == 1) {

37. $previous[0]=$row[0];

38. $previous[1]=$row[1];

39. $previous[2]=$row[2];

40. $previous[3]=$row[3];

41. $previous[4]=$row[4];

42. $first_row=0;

43. }

44. else {

45. if ($row[4] == $previous[4]) {

46. $row[3]=$previous[3] +$row[3];

47. $previous[0]=$row[0];

48. $previous[1]=$row[1];

49. $previous[2]=$row[2];

50. $previous[3]=$row[3];

51. $previous[4]=$row[4];

52. }

53. else {

54. print("<tr><td>$previous[4]</td><td align=center>$previous[3]</td><tr>");

55. $previous[0]=$row[0];

56. $previous[1]=$row[1];

57. $previous[2]=$row[2];

87

58. $previous[3]=$row[3];

59. $previous[4]=$row[4];

60. }

61. }

62. }

63. print("<tr><td>$previous[4]</td><td align=center>$previous[3]</td><tr>");

64. print("<p></p>");

65. print("</table>");

66. print("<p>Document score is the sum of the frequencies of all search words in each

document</p>");

67. print("</center>");

68. mysql_close($link);

69. ?>

From Line 35 the script is devoted to the task of computing and associating scores with the

individual relevant documents. The scores are here computed as the sum of the frequencies of all

keywords in the respective documents. There are many other possibilities for computing scores,

and before attaching to much weight to the scores the concept used should be fully understood.

A search result page is displayed in Figure 8.5.

Figure 8.5: Search results

Administrative module

The most common error beginners commit when constructing a web application is to forget that

the application needs to be managed, maintained and updated. The content of the database ir of

the current application will from time to time for example need to be in inspected. The list of

stop word will certainly need to be adjusted by adding new insignificant words, and removing

meaningful words. Sometimes, a need for orderly removing the database with tables can also

appear. An administrative module should be able to take care of these and other tasks needed for

keeping the application running.

Some possible options are outlined in menu.htm:

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_5.jpg

88

1. <!-- menu.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

7. <title></title>

8. </head>

9. <center>

10. <h3>Administrative menu for search engine.</h3>

11. <table>

12. <tr align="left" ><td >Inspect database content</td></tr>

13. <tr align="left"><td>Display stopwords</td></tr>

14. <tr align="left"><td>Add stop word</td></tr>

15. <tr align="left"><td>Remove stop word</td></tr>

16. <tr align="left"><td>Remove database and tables</td></tr>

17. </table>

18. </center>

19. <body>

20. </body>

21. </html>

The form itself is trivia (Figure 8.6). In this example, we shall limit ourselves to consider a single

script: After initializing the database, it can be useful to study its content. The script inspect.php

displays the content of the database by descriptors in alphabetical order.

Figure 8.6: Administrative menu for search engine

1. <!-- inspect.php -->

2. <?php

3. $link=mysql_connect("localhost",'root','maximus');

4. if (!$link) die("<center><h3>Install MySQL. </h3></center>");

5. $db_selected= mysql_select_db("ir", $link);

6. if (!$db_selected) die("<center><h3>Database ir does not exist.</h3></center>");

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_6.jpg

89

7. $t=mysql_query("SHOW TABLES FROM ir", $link);

8. if (!$t) die("<center><h3>Table Descriptors does not exist.</h3></center>");

9. print("<center>");

10. print("<h3>Database content</h3>"); //

11. print("<table Border>"); //

12. print("<tr><th>Word</th><th>Document words</th><th>Descriptor

frequency</th> <th>Document reference</th></tr>");

13. $r=mysql_query("SELECT * FROM descriptors ORDER by word asc", $link) or die("Nothing SELECTED");

14. while ($row = mysql_fetch_array($r)) {

15. $word=$row[1];

16. $document_words=$row[2];

17. $descriptor_frequency=$row[3];

18. $document_ref=$row[4];

19. print("<tr><td>$word</td><td>$document_words</td>

<td>$descriptor_frequency</td><td>$document_ref</td> </tr>");

20. }

21. print("</table>");

22. print("</center>");

23. mysql_close($link);

24. ?>

In Line 9 all document descriptors in alphabetic order and referred to by the handle $r. Once

again, we use mysql_fetch_array() to get access to the content of the columns in each individual

row. Refer to the SQL CREATE TABLE in descriptors.php for the numbering of the columns

with the first, row[0], containing the id.

You will find illustrations of the all recorded descriptor list in Figure 8.7, and the beginning of

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_7.jpg

90

Figure 8.7: Database content

A stop word list is illustrated in Figure 8.8.

Figure 8.8: List of stop words

http://nordbotten.net/phproot/courses/php_hsh/sessions/session8/images/image8_8.jpg

91

Session 9: e-learning

Web courses

In this session, implementation of web courses using PHP is discussed. As a student of this

course, you should be particularly well armed with good ideas from your personal experience. It

is impossible to go through a complete course in detail. The course you are attending contains for

example more about 1000 files of different types organized in a structure with about 180 folders.

In this session, we concentrate on discussing a few essential problems common for most Web

courses.

As an application example and with reference to Session 8, a hypothetical web course on

Information Retrieval is used. We assume that the following list can be used as a guide for our

discussion:

 Course architecture
 Authorization and authentication
 Texts
 Illustrations
 Literature
 Evaluation

You find a link to the implementation of the example at the end of the session. You can either

register yourself getting your own PIN code, or you can behave as already registered with e-mail

"dummy@dummy" and PIN code "0".

Course architecture

Development of a web course, like any IT system, is an art. There are no absolute, proven rules

for what is the right or the best approach. The more complex the objectives are, the more

elaborated course structure will be required. In this example application, a folder with a flat

organization of all needed files will be considered acceptable. All the files for the example are in

a single folder (with the exception of a database located outside the directly accessible area and

referred to as irCourse.

Security considerations are important only in connection with course design. We use the course

application as a case for for using the functions authorization and authentication of users already

discussed in Session7. Along the road, we shall also make comments to other forms of security.

In Figure 9.1, the overall organization for the example course is depicted. The figure indicates

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_1.jpg

92

Figure 9.1: Course organization

that topics we are particularly interested in discussing are authorization, authentication and

progress control.

Authorization and authentication

In this example we use the functions developed in Session 7 and accessible in the library

mysql_functions.php.

The first page we need is the index.htm which opens our example course scenario. It is a

variation of the file we have used previously and starts by a introductory text to already admitted,

and to new, applying students. If the caller is new, he/she is in Line 4 asked to go on for

registration, while already registered students can proceed to the login as specified in the form

specified in Lines 8-13 .

Consider the login alternative first. The login process requires that the student types his/her

username/e-mail address and personal PIN code which she/he received when registered. The

login alternative is recognized by sending the hidden variable with name login and value "1".

The index.htm page is quite ordinary and looks like this:

1 <!--- index.cfm --->

2. <center>

93

3. <h1> Login</h1>

4. <p>

Thank you for your interest in this course. Access to the course is restricted to registered visitors only.<i>If you

already are registered</i>, please go directly to the login.</p>

5.<p ><i>If you are new and want to become a registered user</i>, we need some information from you, and

you will need a personal identity number (PIN). Please continue with the registration</p>

6. <table><

7. <tr><td>Login with your</td></tr>

8. <FORM ACTION="validation.php" method="post">

9. <tr><td>Your username:</td> <td><input name="username" type="text" size="20"></td> </tr>

10. <tr><td>Your PIN code:</td><td> <INPUT TYPE="password" name ="submitted_pin" SIZE="20"></td></tr>

11. <input name="login" type="hidden" value="1">

12. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response" VALUE="Submit"></td></tr>

13. </FORM>

14. </table>

</center>

Note that this example applies a more strict authentication policy than that followed by PHP

with MySQL!

Registration and authorization

If the student replies that he wants to register, the registration.htm script is called:

1. <!--- registration.cfm --->

2. <html>

3. <head>

4. <title>applications</title>

5. </head>

6. <center>

7. <h1>Registration</h1>

8. <p>In order to recognize and serve the different requirements of our visitors, each visitor needs her/his own

username and PIN code.
 Please, complete and submit the form Your username and PIN code will be

returned to you.</p>

9. <FORM ACTION="validation.php" method="post">

10. <table>

11. <tr><td>Your first name:</td> <td><input name="firstname" type="text" SIZE="20"></td> </tr>

12. <tr><td>Your last name:</td> <td><input name="lastname" type="text" SIZE="20"></td> </tr>

13. <tr><td>Your user name:</td><td> <INPUT TYPE="text" name ="username" SIZE="20"></td></tr>

14. <input name="registration" type="hidden" value="1">

94

15. <tr><td>Click the button:</td> <td><INPUT TYPE="SUBMIT" NAME="response"

VALUE="Submit"></td>></tr>

17. </table>

18. </FORM>

19. </center>

20. </body>

21. </html>

The PIN could either be self-composed, i.e. the person who request registration provides his/her

own password, or it system assigned. Self-composed PINs have the advantages that they may be

easier for the owners to remember, and they can by special techniques (hashing) be kept secret

also for the system staff. Compared with the system assigned PIN's, the disadvantages of self-

composed PINs are they may be easy to guess, and they cannot easily serve as internal

identifiers. In this example, the registration form does not offer self-composed PINs indicating

that we have chosen to use system assigned identifiers. The registration alternative is recognized

by the attached hidden variable with name registration and value "1".

Both index.htm and registration.htm call the script validation.php for processing. This script

is a variation of the script funtioncalls.php used for introducing the functions authentication()

and authorization() in Session 7. The version we use in this example is shown below.

1. <!-- validation.php -->

2. <?php

3. //Open connection/database/table

4. $link=mysql_connect("localhost", "root","maximus");

5. $db="irCourse";

6. $db_selected=mysql_select_db($db, $link);

7. if(!$db_selected) {

8. mysql_query("CREATE DATABASE $db", $link);

9. mysql_select_db($db, $link);

10. mysql_query("CREATE TABLE Users(firstname VARCHAR(20), lastname VARCHAR(20), email VARCHAR(20),

PIN VARCHAR(10))",

$link);

11. }

12.//Function calls

13. include "mysql_functions.php";

14.if (isset($_POST['login'])){

15. $approved=authentication($db, $_POST['username'], $_POST['submitted_pin']);

16. if ($approved[0]=="yes") {

17. $_SESSION['PIN']=$_POST['submitted_pin'];

18. print("<h3><center>$approved[1], you are logged in.

19. Please continue</center></h3>");

20. }

21. else {

22. print("<p><center>Your PIN code was invalid</center></p>");

23. }

95

24. }

25. if(isset($_POST['registration'])) {

26. $reg=authorization($db,$_POST['firstname'],$_POST['lastname'], $_POST['username']);

27. print("<center>You have been successfully authorized to access the site.

28. Your username is: $reg[0], and your PIN is: $reg[1].<p></p>");

29. print("Return to Login.</center> ");

30. }

31. mysql_close($link);

32. ?>

The script starts by connection to MySQL, selecting database irCourse and checking the

existence of the database in Lines 4-11. Our library of functions is included in Line 13.

Remember to insert the relative path if the library is residing in another directory!

In Line 14 and Line 25, the data received are identified either as login data or registration data,

and the respective function is called. If the case is login and the authentication is successful, a

message is returned to the student with a link to content.htm which can be activated. If the case

is registration, a message with the username and the PIN code are returned including also a link

to the login page, index.htm. Note that we define a new internal variable $_SESSION['PIN'] in

Line 17 for future use.

List of content

After a positive authentication page is processed, content.php is called. The first question is why

this is a php script and not an htm page. The answer is that we want to record all visitors to this

page by making use of the function logging.php in the library musql_functions.php. Lines 2-6

take care of this task.

1. <!-- content.php -->

2. <?php

3. include("mysql_functions.php");

4. logging($_SESSION['PIN']);

5. ?>

6. <h2>Information Retrieval Course</h2>

7. <h1>Content:</h1>

8.

9. session: Introduction

10. session: Description and query language

11, session: Document indexing

12. session: File organization

13. session: Search operation

14 session: Evaluation

15 <p></p>

16. References

17. Figures

18.

96

The remaining part of this page is rather trivial and requires no further comments. From the list

of contents, there are links to the different parts of the course. .(Figure 9.2).

Figure 9.2: Content of an Information Retrieval Course

Sessions

As illustration, only a few components are implemented in this example and listed below. We

use again the same trick as above and declare each completed session file as a php script, and

continue to log visits to the sessions. In addition, we have a requirement that it should not be

permitted to bypass the authentication for entry to the course.

To be able to satisfy the last requirement, we first define a new function:

1. function logged_in($PIN) {

2. if(!isset($PIN)) {

3. exit("<center><h1>You can access this application only after logging in.</h1></center

>");

4. }

5. }

We call this function with logged_in($_SESSION['PIN']). Obviously, if the client has not went

through the authorization procedure, the variable $_SESSION['PIN'] cannot be set and the

system will provide a warning message and exit the application.

Session 1 can look like this:

1. <!--session1.php -->

2. <?php

3. include("mysql_functions.php");

4. logged_in($_SESSION['PIN']);

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_2.jpg

97

5. logging($_SESSION['PIN']);

6. ?>

7. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

8. <h2>Session 1:Introduction</h2>

9. <p>The topic information retrieval concerns the structure, analysis, implementation, search and

dissemination of documents representing information.The purpose of an information retrieval system is to

satisfy needs for information in a best possible way. </p>

10. <p>A typical modern information retrieval system is implemented in a host computer which can be

accessed on internet from client computers. It is implemented with 2 sets of software, the client software and

the server software.</p>

11. <p>The required client server is the basic software for working with the internet, while the server

requires the general software to provide services on internet as well as specialized software for the

information retrieval application. </p>

12. <p>The information retrieval application is build with a collection of documents as in an ordinary library

or files as with a provider of electronic document representations as the core. To help the user to identify the

documents in which he/she is interested, a set of files with meta data for the documents are developed and

frequently organized in a database. In some applications, but far from all, even the electronic documents

themselves can be included in the database.</p>

13. <p>To interact with the system, the user must use a query language which has been adjusted to the type

of meta data in the database. The user must be able to describe the general properties of the unknown

documents he/she wants to identify. On the other side, the retrieval system must be able to interprete the

requests, communicate with the user for more details if necessary, and search in the system for the documents

wanted. Figure 1 gives an overview of a retrieval system.</p>

14. <p>Depending on the users knowledge about the system, the components of the query language, the meta

data for the documents included in the collection, and the composition of documents, the retrieval process

may be more or less successful. To be able to compare one retrieval system application with a second,

measures of performance are needed. For information retrieval, 2 measures, recall and precision, have been

widely used.</p>

15. <p>If A is the subset of the documents which are relevant for a certain task expressed the query by Q, and

B is the retrieved documents, the ratio (A AND B)/A is called the recall of the retrieval system for the query

Q. The precision of the expressed Q for the same task is the ratio (A AND B)/B. Since the evaluation of the

recall in principle assumes that the set of relevant documents in the collection is known (if it is known, no

retrieval problem exists), the set A has to be estimated. Precision, on the other hand, requires no knowledge

outside the retrieved set B.</p>

16. <h3>Literature</h3>

17. <p>Return to the Content.</p>

Note that the links to other sessions, literature, figures, etc. are included as in a usual HTML

tags.. Figure 9.3 shows a part of the session.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_3.jpg

98

Figure 9.3: The start of Session 1

There are several opinions about how to control the progress of students through a course

depending on the author's experience and beliefs. One hypothesis is that students should not

progress too fast through the sessions. Times, at which each session is opened, are implemented

for Sessions 2-6 in this example. We shall return to how the variables

$_SESSION['opening_time_2'], $_SESSION['opening_time_3'] and

$_SESSION['opening_time_6'] are set at the end of this session.

Alternative hypotheses are that the learning from the current session should be tested before a

student is permitted to advance to the next, or that deadlines and closing dates for the sessions

constitute a positive learning pressure. A number of interesting hypotheses can be tested in

connection with course progress regulation.

The time access control is expressed in Lines 4-9 in the following 3 php scripts.

1. <!-- session2.php -->

2. <?php

3. if (isset($_SESSION['opening_time_02'])) {

4. if ($time() < $_SESSION['opening_time_2']) {

5. print("<center><h3>Session not yet open</h3><p>");

6. print("Return to Contents.</p></center>");

7. exit();

8. }

9. }

10. include("mysql_functions.php");

11. logged_in($_SESSION['PIN']);

12. logging($_SESSION['PIN']);

13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 2: Description and query language</h2>

16.<p> No text uploaded. </p>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php

99

Line 3 test if an opening time has been set (for setting opening times, see below), and in Lines 4-

7, a test is done whether the opening time has occurred or not.

The next 2 scripts follow the same procedure:

1. <!-- session3.php -->

2. <?php

3. if (isset($_SESSION['opening_time_02'])) {

4. if ($time() < $_SESSION['opening_time_3']) {

5. print("<center><h3>Session not yet open</h3><p>");

6. print("Return to Contents</p> </center>");

7. exit();

8. }

9. }

10. include("mysql_functions.php");

11. logged_in($_SESSION['PIN']);

12. logging($_SESSION['PIN']);

13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 3: Document indexing</h2>

16.<p> No text uploaded. </p>

The next session text example is Session 6:

1. <!-- evaluation.php -->

2. <?php

3. if (isset($_SESSION['opening_time_02'])) {

4. if ($time() < $_SESSION['opening_time_6']) {

5. print("<center><h3>Session not yet open</h3><p>");

6. print("Return to Contents.</p></center>");

7. exit();

8. }

9. }

10. include("mysql_functions.php");

11. logged_in($_SESSION['PIN']);

12. logging($_SESSION['PIN']);

13. ?>

14. <h1>A COURSE IN INFORMATION RETRIEVAL</h1>

15. <h2>Session 6:Evaluation</h2>

16. <p>A retrieval system can be evaluated bases on a number of criteria including its effectiveness to provide

a satisfactory output, operational, maintenance and capital costs. In this session, we focus on the effectiveness

of the system with particular reference to the 2 central concepts: recall and retrieval.</p>

17. <p>Figure 2 presents the relations among the different document sets and the

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php
http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/text/content.php

100

2 measures. Evaluating a retrieval system with these measures requires an experiment which can be outlined

by the following steps:</p>

18.

19. Delimit the collection for the experiment

20. Define a set of retrieval queries representative for the use of the collection

21. Draw a random sample of the collection documents

22. Let experts decide how many documents in the sample are relevant for the different queries

23. Estimate the total number of items in the collection relevant for the different queries

24. Run the queries and let experts decide how many relevant items are found in each query

25. Compute recall and precision measures based on the estimated totals and the relevant documentsfrom

the queries

26.

27. <h3>Literature</h3>

28. Return to the content.

Instructor's tools

The course implementation is now as complete as planed with one exception. Still, the question

about how to set the opening times has to be discussed. As pointed out in several occasion, in

general an application is not complete without a tool box for the administrator. This should of

course not be accessible for the users.

In create another directory, tools, in the examples directory in which we can enter a menu.htm,

(Figure 9.4) with 2 links to list_students.php and set_openings.htm . The menu is so simple

Figure 9.4: Tools for the instructor

that we don't have to waste time on the form. Instead we take a short time to look at the list.php

1.<?php

2. $link=mysql_connect("localhost", "root","maximus");

3. $db="irCourse";

4. $db_selected=mysql_select_db($db, $link);

5.if(!$db_selected) {

6. mysql_query("CREATE DATABASE $db", $link);

7. mysql_select_db($db, $link);

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_4.jpg

101

8. mysql_query("CREATE TABLE Users(firstname VARCHAR(20), lastname VARCHAR(20), email

VARCHAR(20), PIN VARCHAR(10))",$link);

9. }

10. print("<center><h2>Registered students. </h2>");

11. $r= mysql_query("Select * FROM Users", $link);

12. print("<table border>");

13. print("<tr><th>First name</th><th>Last name</th><th>User name</th><th>PIN</th></tr>");

14. while ($row=mysql_fetch_array($r)) {

print("<tr><td>$row[0]</td><td>$row[1]</td><td>$row[2]</td><td>$row[3]</td></tr>");

15. }

16. ?>

There is nothing new in this script, but note that the handle $r provided by the mysql_query() in

Line 11 is used in the following while loop to extract each row as an array of column values for

printing. (See Figure 9.5).

Figure 9.5: Registered students

The second tool we want for the tool case is a capability to set opening times for each session

maybe spaced a week apart. We need a form page of the type:

1. <!-- set_time.htm -->

2. <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

3. "http://www.w3.org/TR/html4/loose.dtd">

4. <html>

5. <head>

6. <title>Untitled Document</title>

7. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

8. </head>

9. <center>

10. <h2>Opening time for course sessions.</h2>

11. <p>The opening of time for each session can be set by the following form. The time specified is the server

time. </p>

12. <table>

13. <form action="set_time.php" method="post">

14. <tr><td>Session:</td> <td><input name="session" type="text" value="00" size="4"

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_5.jpg

102

maxlength="2"></td></tr>

15. <tr><td>Hour:</td> <td><input name="hour" type="text" value="00" size="4"

maxlength="2"></td></tr>

16. <tr><td>Minute:</td><td><input name="minute" type="text" value="00" size="4"

maxlength="2"></td></tr>

17. <tr><td>Second:</td><td><input name="second" type="text" value="00" size="4"

maxlength="2"></td></tr>

18. <tr><td>Month:</td><td><input name="month" type="text" value="00" size="4"

maxlength="2"></td></tr>

19. <tr><td>Day of month:</td><td><input name="day" type="text" value="00" size="4"

maxlength="2"></td></tr><tr>

20. </tr><td>Year:</td><td><input name="year" type="text" value="2006" size="4"

maxlength="4"></td>

21. <tr><td>Submit:</td> <td><input type="submit" value="Submit"></td></tr>

22. </form>

23. </table>

24. </center>

25. <body>

26. </body>

27. </html>

The form has pre-set width and values for each time component. If you want the system to make

the session accessible at the beginning of each 24 hour day, the hour, minute and second can be

left with default values. Type always "0" in a vacant space to the left of a single digit. (Figure

9.6).

Figure 9.6: Table for specifying when a session should open

The form calls set_time.php which introduces a few interesting time related function.

1. <!-- set_time.php -->

2. <?php

3. $ts=mktime($_POST['hour'],$_POST['minute'],$_POST['second'],$_POST['month'],

$_POST['day'],$_POST['year']);

4. $ct=time();

5. $s=$_POST['session'];

http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_6.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session9/images/image9_6.jpg

103

6. $_SESSION['opening_time_'.$s]=$ts;

7. print("<center>");

8. print("<h3>You have set the timestamp $ts for Session $s.</br>

The timestamp for when set was $ct. </h3>");

9. print("</center>");

10. ?>

The mktime() function in Line 3 converts the 6 time-related form variables to a timestamp, i.e. a

unique value corresponding to the number of seconds since the beginning of 1970, to the

specified point of time. Another function, time(), fetches the data from the clock of the server,

and gives the timestamp for the point of time it was executed. These 2 function make it possible

to set up a condition which is satisfied at the time specified in mktime() relative to the server

time.

The opening times set in this example will only last for your session. Other students will not

experience the opening times you have set, neither will you next time you enter the example. To

make the opening times permanent, they must be saved in a file or a database, and retrieved at

the beginning of the application.

Concluding remarks

We have in this session studied some challenges connected with implementation of a web

course. The dynamics required are mainly associated with the authentication of students and the

use of the course. There is several obvious research tasks associated with web courses. Web

courses can be an excellent choice for implementing some topics and a bad for other. Which and

why? Who are the students benefiting from a web course? Which are efficient authentication

variables for a course? Is authentication really necessary and why?

Most courses have a number of structural attributes in common. It is possible to develop course

generators, which permit the author to select his/her preferred structure and of course content.

The PHP 5 with MySQL course was developed by means of a generator.

104

Session 10: Web shop

e-shops

One of the most popular and talked about web applications is e-shops, e-business or e-commerce.

Complete commercial systems are available to buy from the shelf, new web shops have emerged

and many have disappeared. Great expectations obviously exist for the future of web shops.

These applications also demonstrate a number of web application aspects.

In this session we discuss and demonstrate some of the basic principles for a web shop. The

example is a web shop, which are selling the web scripts we have introduced in this course. As

all the other examples, our web shop application is not complete, and can be improved in many

ways.

The essential scripts of the application are discussed below. Some trivial pages used in this

example as conditions.htm, shipping.htm, support.htm and about.htm are illustrated in

figures, but are not discussed below. It is recommended that you make yourself acquainted with

the example before you start studying the scripts in detail.

Business promotion

Operating a web shop requires product promotion, i.e. dissemination of information about the

products offered, prices, sales conditions, shipping, information about the company and its

addresses. In addition to distribution of information by huge lists of e-mail addresses and

advertisements, a web shop must have a home page with links to required information and

provide the possibility to order/buy products online. In our example, Software Shop has a home

page generated by the page index.htm. This homepage, Figure 10.1, will serve as an

introduction to this application.

Figure 10.1: Main page for Software Shop

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_1.jpg

105

In a fancy commercial application, the home page script should probably contain icons, flash or

applet driven animation, etc. The main focus in our example is, however, the dynamics aspects

from a PHP point of view. On the introductory page, a menu with links provides a list of the

services and information offered to the customers. The example concentrates on products, orders

and sales. On the Introductory page, the links to products.htm and information scripts are on

Lines 5 - 9:

1. <!--- index.htm --->

2. <h1>Welcome to the Software Shop</h1>

3. <p>The Software Shop has an exclusive suite of software for small companies. We have well satisfied

customers and would be glad to see you among them. Please study out list of Product and if you fin any item of

interest, click for more details and price. You can buy the product safely on the net and the merchandise will be

shipped to you according to the alternative you prefer.</p>

4.

5. Products

6. Sales conditions

7. Shipping

8. Support

9. About Software Shop

10.

This page is of minimal interest in the context of new dynamic web features.

The product.htm page generates a table with a row for each product. This page is also a straight

forward demonstration of the HTML table tag features.

1. <!--- products.htm --->

2. <center>

3. <h1>Products</h1>

4. <p>Our products cover dynamic web applications. They all require a web server and a ColdFusion

application server installed on your host computer:</p>

5. <h3>Product list</h3>

6. <table border="2" cellpadding="10" cellspacing="10">

7. <tr><td>Product name:</td><td>Demonstration:</td> <td>Price:</td></tr>

8. <tr><td>Market research</td><td>Demo</td><td>$ 150,00</td></tr>

9. <tr><td>Opinion polls</td><td>Demo</td><td>$

150,00</td></tr>

10. <tr><td>Search engine</td><td>Demo</td><td>$

200,00</td></tr>

11. <tr><td>Net course </td><td>Demo</td><td>$

350,00</td></tr>

12. <tr><td>e-Shop</td><td>The current application</td><td>$

250,00</td></tr>

13. </table>

Each product is listed with the possibility to get an online demo of the product. The table also

informs the customers about the prices and has a link to ordering. (Figure 10.2).

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_2.jpg

106

Figure 10.2: Products and prices

Buying products

Buying products is taken care of by the form.htm script which generates the form (Figure 10.3)

Figure 10.3: Customer form

by which necessary data about the customer are collected:

1. <!--- form.htm --->

2. <center>

3. <h1>Customer form</h1>

4. <p>If you are a new customer, please give the information necessary to send the products you buy to you.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/figure3.cfm

107

Please answer all questions
 If you are a previous customer, pleas go the the last

part of the form and submit your email address:</p>

5. <table >

6. <form action="customers.php" method="post">

7. <tr><td>First name: </td><td><input type="text" name="firstname"></td></tr>

8. <tr><td>Last name: </td><td><input type="text" name="lastname" ></td></tr>

9. <tr><td>Street address: </td><td><input type="text" name="street"></td></tr>

10. <tr><td>City: </td><td><input type="text" name="city" ></td></tr>

11. <tr><td>State: </td><td><input type="text" name="state" value=""></td></tr>

12. <tr><td>Country: </td><td><input type="text" name="country"></td></tr>

13. <tr><td>Zip no.: </td><td><input type="text" name="zip"></td></tr>

14. <tr><td>e-mail:</td><td><input type="text" name="submitted_email"></td></tr>

15. <input type="hidden" name="mark" value="0">

16. <tr><td><td><td><input type="submit" value="Submit"></td></tr>

17. </form>

18. </table>

19. <p>OR</p>

20. <p>Have you previously bought products from us, please type your</p>

21- <table cellpadding="10">

22. <form action="customers.php" method="post" >

23. <tr><td>e-mail address: </td><td><input type="text" name="submitted_email"></td></tr>

24. <input type="hidden" name="mark" value="1">

25. <tr><td></td><td><input type="submit" value="Submit"></td></tr>

26. </form>

27. </table>

28. </center>

The FORM tags for 'new' customers extend on Lines 6-17 and collect name and address. A

second form block on Lines 22 - 26 for 'old' customers collects only the e-mail address. The

application must be able to 'remember' the data provided, and to check the e-mail address and

retrieve the information when a customer responds as an 'old' customer. To distinguish which of

the two blocks is submitted, a 'hidden' variable mark is used with value "0" set in Line 15 if the

customer is a 'new', and set to "1" set in Line 24 if he/she is an 'old'. Both blocks call on the

script customers.php when submitted. (Figure 10.4).

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_4.jpg

108

Figure 10.4: Verifying customer information

Before we proceed to the customers.php script, we need a database, shop, and a table,

customers. The table must have the columns/types:

 firstname VARCHAR(30)
 lastname VARCHAR(20)
 street VARCHAR(20)
 city VARCHAR(20)
 state VARCHAR(20)
 country VARCHAR(20)
 zip VARCHAR(10)
 email VARCHAR(30)

All variables are defined as text variables.

A second table, sales, will also be created. This table will be discussed in connection with the

script sale.php below.

The customers.php script has 3 tasks.

 update the database table customers with the data about the customer if he is 'new (Line 15),
 retrieve customer data from the database for display if he is an 'old' customer (Line 35)
 display recorded customer data for the client.

1. <!-- customer.php -->

2. <?php

3. $link=mysql_connect("localhost", "root","password");

4. $db="shop";

5. $db_selected=mysql_select_db($db, $link);

6. if(!$db_selected) {

7. mysql_query("CREATE DATABASE $db", $link);

8. mysql_select_db($db, $link);

9. mysql_query("CREATE TABLE customers(id INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(id),firstname

VARCHAR(30), lastname VARCHAR(20), street VARCHAR(20),city VARCHAR(20), state VARCHAR(20), country

VARCHAR(20),zip VARCHAR(10), email VARCHAR(30))", $link);

109

10. mysql_query("CREATE TABLE sales(customer_id VARCHAR(10),total VARCHAR(10),ddate VARCHAR(10)",

$link);

11. }

12. if ($_POST['mark'] == "0") {

13. mysql_query("INSERT INTO customers(firstname,lastname,street,city,state,country, zip, email) VALUES

('$_POST[firstname]','$_POST[lastname]', '$_POST[street]',

'$_POST[city]','$_POST[state]','$_POST[country]','$_POST[zip]', '$_POST[submitted_email]')", $link);br> 14.

print("<center><h3>You are recorded with the following data:</h3>");

15. print("<table>");

16. $r=mysql_query("SELECT * FROM customers WHERE email='$_POST[submitted_email]'", $link) or die("Your

record cannot be found.");

17. while ($row = mysql_fetch_array($r)) {

18. $_SESSION['id']=$row[0];

19. print("<tr><td>Customer id:</td><td>$_SESSION[id]</td></tr>");

20. print("<tr><td>First name:</td> <td>$_POST[firstname]</td></tr>");

21. print("<tr><td>Last name:</td> <td>$_POST[lastname]</td></tr>");

22. print("<tr><td>Street address:</td> <td>$_POST[street]</td></tr>");

23. print("<tr><td>City:</td> <td>$_POST[city]</td></tr>");

24. print("<tr><td>State:</td> <td>$_POST[state]</td></tr>");

25. print("<tr><td>Country:</td> <td>$_POST[country]</td></tr>");

26. print("<tr><td>Zip code:</td> <td>$_POST[zip]</td></tr>");

27. print("<tr><td>E-mail:</td> <td>$_POST[submitted_email]</td></tr>");

28. print("</table>");

29. }

30. print("<p>Are the above data correct? Yes/No</p>");

31. print("</center>");

32. }

33. else {

34. print("<center>");

35. $r=mysql_query("SELECT * FROM customers WHERE email='$_POST[submitted_email]'", $link) or die("Your

email cannot be found.");

36. }

37. print("<center><h3>We have the following data about you:

38. </h3>");

39. print("<table>");

40. while ($row = mysql_fetch_array($r)) {

41. $_SESSION['id']=$row[0];

42. print("<tr><td>Customer id:</td> <td>$_SESSION[id]</td></tr>");

43. print("<tr><td>First name:</td> <td>$row[1]</td></tr>");

44. print("<tr><td>Last name:</td> <td>$row[2]</td></tr>");

45. print("<tr><td>Street address:</td> <td>$row[3]</td></tr>");

46. print("<tr><td>City:</td> <td>$row[4]</td></tr>");

110

47. print("<tr><td>State:</td> <td>$row[5]</td></tr>");

48. print("<tr><td>Country:</td> <td>$row[6]</td></tr>");

49. print("<tr><td>Zip code:</td> <td>$row[7]</td></tr>");

50. print("<tr><td>E-mail:</td> <td>$row[8]</td></tr>");

51. }

52. print("</table>");

53. print("<p>Are the above data correct? Yes/No</p>");

54. print("<center>");

55. }

56. mysql_close($link);

57. ?>

Line 12 checks if the data received concern a new customer. If so, a mysql_query() with an

SQL INSERT INTO table customers, inserts the submitted data. The 'old' customers are taken

care of by Lines 33 - 53. Usually only one row is retrieved, but if the customer has submitted

data as 'new' customer twice or more, there can be more than one record. (Figure 10.4). Finally,

if the customer accepts the displayed data, the control is transferred to script order.htm. Note the

Lines 16-18 and Line 41 for forming the variable $_SESSION['id'].

Figure 10.5: Order form

The next step is order.htm.. The page contains a set of multiple inputs (Figure 10.5). The values

of the checked items are saved in a shopping array named order:

1. <!-- order.htm -->

2. <center>

3. <h1>Order</h1>

4. <p>Please, mark the items you want to buy:</p>

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_4.jpg
http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_5.jpg

111

5. <form action="sum.php" method="post" >

6. <table>

7. <tr><td><input type="checkbox" name="order[Market research]" value="150">Market research -

$150.00</td></tr>

8. <tr><td><input type="checkbox" name="order[Opinion poll]" value="150">Opinion poll - $150.00</td></tr>

9. <tr><td><input type="checkbox" name="order[Search engine]" value="200">Search engine -

$200.00</td></tr>

10. <tr><td><input type="checkbox" name="order[Net course]" value="350">Net course - $350.00</td></tr>

11. <tr><td><input type="checkbox" name="order[e-Shop]" value="250">e-Shop - $250</td></tr>

12. <p></p>

13. <tr><td><input type="submit" value="Order"></td></tr>

14. </table>

15. </form>

16. </center>

Figure 10.6: Payment form

When the above form is submitted with 1 or more selected products, the control is left to the

sum.php script. Here are several new PHP features introduced. In Line 4 the built-in function

getdate() is used. It returns an associative array with the indices seconds, minutes, hours,

mday, mon, year, weekday, and month. In sum.php we make use of a few of these elements.

Note that we here have an example of a mixed PHP and HTML script.

1. <!-- sum.php -->

2. <?php

3. $total=0;

4. $day=getdate();

5. print("<center><h2>ORDER RECEIVED</h2>");

6. print("<p>Date: $day[mday].$day[mon].$day[year] </p>");

7. print("<p>Thank you for ordering the following items:</p> ");

112

8. print("<table BORDER>");

9. foreach($_POST['order'] as $key => $value) {

10. print("<tr><td>$key</td> <td>$value</td>");

11. $total=$total + $value;

12. }

13. $_SESSION['total']=$total;

14. print("<tr><td> Total</td> <td>$total</td></tr>");

15. print("</table>");

16. ?>

17. <p>Please return your creditcard information:</br>

18. <form action="sale.php" method="post">

19. Card type:

20. <table>

21. <tr><td><input type="radio" name="card_type" value="VISA">VISA</td></tr>

22. <tr><td><input type="radio" name="card_type" value="Mastercard">MASTERCARD</td></tr>

23. <tr><td><input type="radio" name="card_type" value="Ammerican Express">AMERICAN

EXPRESS</td></tr>

24. </table>

25. <p></p>Card number:<input type="text" validate="creditcard" name="card_no">

Expire date: <input type="text" name="expire_date">

26. <p><input type="submit" value="Submit order"></p>

27. </form>

28. </center>

The remaining of the script specify a form for the customer to specify credit card type, number

and expire date (Figure 10.6). This script is incomplete. For obvious reasons, there is no

connection to an authorized site for checking credit card data and for handling the payment.

Several companies specialized in this kind of service exist.

Purchasing products

We shall need a second database table, Sales, which must be defined with the following 3

columns:

 id
 total
 ddate

We assume that all are specified as text type.

Submitting the shopping list and the credit card information establish a purchase. The task of the

script sales.php is to process the purchase. The date of the purchase is determined in Line 12

and the transaction including customer identification, total value of the transaction and the date is

booked are stored in table sales by means of the sql INSERT INTO in Line 15.

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_6.jpg

113

1. <!-- sale.php -->

2. <?php

3. $link=mysql_connect("localhost", "root","password");

4. $db="shop";

5. $db_selected=mysql_select_db($db, $link);

6. if(!$db_selected) {

7. mysql_query("CREATE DATABASE $db", $link);

8. mysql_select_db($db, $link);

9. mysql_query("CREATE TABLE customers(id INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(id),firstname

VARCHAR(30), lastname VARCHAR(20), street VARCHAR(20),city VARCHAR(20), state VARCHAR(20), country

VARCHAR(20),zip VARCHAR(10), email VARCHAR(30))", $link);

10. mysql_query("CREATE TABLE sales(id VARCHAR(10),total VARCHAR(10),ddate VARCHAR(10)", $link);

11. }

12. $day=getdate();

13. print("<center><h2>ORDER RECEIVED</h2>");

14. print("<p>Date: $day[mday].$day[mon].$day[year] </p>");

15. mysql_query("INSERT INTO sales(id,total,ddate) VALUES('$_SESSION[id]','$_SESSION[total]', '$day')",$link);

16. print("<center><h3>Sales for customer no. $_SESSION[id] has been processed.</h3>");

17. print("<p>Print out a receipt.</p></center>");

18. mysql_close($link);

19. ?>

sales.php returns a message that the transaction has been processed, and offers a printout of a

receipt (Figure 10.7):

1. <!-- receipt.php -->

2. <?php

3. $link=mysql_connect("localhost", "root","password");

4. $db="shop";

5. $db_selected=mysql_select_db($db, $link);

6. if(!$db_selected) {

7. print("<center><h2><front color=red>The database does not exist.</h2>

8. </center>");

9. exit();

10. }

11. print("<h2>RECEIPT</h2>");br> 12. $r=mysql_query("SELECT firstname,lastname, street, city,state,country,

zip FROM customers WHERE id = '$_SESSION[id]'", $link);

13. while ($row = mysql_fetch_array($r)) {

14. print("$row[0] $row[1]
");

15. print("$row[2]
");

16. print("$row[3] $row[6]
");

17. print("$row[4]
");

18. print("$row[5]
");

19. }

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_7.jpg

114

20. $day=getdate();

21. $r=mysql_query("SELECT total FROM sales WHERE id = '$_SESSION[id]'", $link);

22. mysql_query("INSERT INTO sales(id,total,ddate) VALUES('$_SESSION[id]','$_SESSION[total]', '$day')",$link);

23. print("<p></p>");

24. print("We have charged your account with $ $_SESSION[total] for products sent to you.
");

25. print(" Thank you for ordering our products.
");

26. print("<p></p>");

27. print("<i>Software Shop</i>");

28. print("<p>Return to product page.</p>");

29. mysql_close($link);

30. ?>

Figure 10.7: Confirmed order

The output receipt is illustrated in Figure 10.8 .

Figure 10.8: Receipt

http://nordbotten.net/phproot/courses/php_hsh/sessions/session10/images/image10_8.jpg

115

A final remark

You have arrived to the end of this course. We hope you have enjoyed our discussions and

examples, and become enthusiastic about the possibilities of dynamic web applications.

This course assumes the use of the traditional approach to PHP and MySQL. PHP 5 offers also

the use of object oriented programming and MySQL has an object oriented interface, mysqli,

available.

If you are planning to improve your skills with PHP and MySQL, we strongly recommend visits

to the PHP and MySQL home pages.

116

A bibliography for further studies

Bandyopadhyay, N (2001): e-Commerce: Context, Concepts and Consequences 1/e.

McGrawHill. NY.

Brook-Bilson, R. (2003): Programming ColdFusion. Second Edition. O'Reilly. Ca.

Castro, E. (1999): PERL and CGI. Peachpit Press. CA.

Comer, D.E. (2005): The Internet Book. Prentice Hall. NJ.

Flanagan, D. (2001): JavaScript: The Definitive Guide, 4th Edition. O'Rilley, Ca.

Hatfield, B. (1999): Active Server Pages for Dummies. IDG. CA.

McFarland, D. S. (2004): Dreamweaver MX 2004: The Missing >Manual. O'Rilley, Ca.

Mohammed, R., Fisher,R., Javorski, B., and Cahill, A.(2001): Internet Marketing: Building

Advantage in the networked Economy 1/e. McGrawHill. NY.

Moock, C. (2002): ActionScript for Flash MXC. The Definitive Guide. 2nd Edition. O'Reilly.Ca.

Reding, E.(2001): Building an E-Business: From the Ground Up 1/e. McGrawHill. NY.

Sebesta, R.W. (2005): Programming the World Wide Web. Pearson-Addison Wesley. NJ.

Wall, L., Christiansen, T. and Schwartz, R. (1996): Programming Perl. O'Reilly. Ca.

